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Abstract

The use of software controlled systems in industrial and household appliances, where safety

is of paramount concern, is increasing at an unprecedented rate. Programs with loops

that manipulate arrays are quite common in such software and ensuring their correctness

is extremely important. State-of-the-art tools use a combination of verification techniques

that work well for certain classes of programs and assertions, and yield conservative re-

sults otherwise. In this thesis, we present three new compositional and property-driven

verification techniques that use mathematical induction in novel ways to prove interest-

ing properties of a class of array-manipulating programs with a symbolic parameter N .

Specifically, if ϕ(N) represents a pre-condition, ψ(N) represents a post-condition and

PN represents a program, all parameterized by the same natural number N (can be ex-

tended to multiple parameters), the techniques presented in this thesis provide new ways

of proving the parametric Hoare triple {ϕ(N)} PN {ψ(N)} for all N > 0.

Our first contribution is a property-driven verification method that infers array-

access patterns in loops using simple heuristics and then uses this information to prove

universally quantified assertions about arrays in a compositional manner. Specifically, we

identify tiles of array-access patterns in a loop and use the tiling information to reduce the

problem of checking a quantified assertion at the end of a loop to an inductive argument

that checks only a slice of the assertion for a single iteration of the loop body. We show

that this method extends naturally to programs with sequentially composed and nested

loops. We have implemented the method in a tool called Tiler. We demonstrate that

Tiler outperforms several state-of-the-art tools that verify array-manipulating programs

on a large suite of interesting benchmarks.

The tiling technique requires invariants on slices of arrays for compositional rea-

soning. In general, such invariants are difficult to generate automatically. We overcome

this limitation by presenting a second property-driven verification technique called ‘full-
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program induction’. Instead of inducting over iterations of individual loops, this technique

inducts over the parameter N considering the whole program, possibly containing mul-

tiple loops. It involves transforming the program PN into a sequential composition of

PN−1 and an appropriate ‘difference’ program ∂PN . Using a standard induction argu-

ment, the proof of {ϕ(N)} PN {ψ(N)} is then reduced to proving a parametric Hoare

triple over ∂PN , assuming {ϕ(N − 1)} PN−1 {ψ(N − 1)} holds. Since ∂PN can be much

simpler than PN for certain classes of programs, this technique can result in significant

simplification of our proof obligation. The novelty of this technique is that we can often

bypass the generation and use of loop-specific invariants, even in programs with multiple

loops, while such invariants are necessary in classical verification techniques. We have

developed a prototype tool Vajra to assess the efficacy of full-program induction. We

demonstrate the performance of Vajra vis-a-vis several state-of-the-art tools on a set of

array-manipulating benchmarks from verification competitions and industry code.

As our third contribution, we adapt the full-program induction technique such that

the computation of the difference program is significantly simplified. The resulting tech-

nique, called ‘relational full-program induction’, involves transforming PN into a sequen-

tial composition of two programs, QN−1 and Peel(PN), such that Peel(PN) is provably

simpler than PN and is easily computed for a large class of interesting programs. The

program QN−1, while being syntactically similar to PN−1, may not be semantically equiv-

alent to PN−1. Therefore, the inductive hypothesis {ϕ(N − 1)} PN−1 {ψ(N − 1)}, used

in full-program induction, may not hold if PN−1 is replaced by QN−1. To rectify this

situation, we compute simple relational invariants between corresponding variables at

corresponding control points of PN−1 and QN−1. These relational invariants are then used

to infer an appropriate post-condition ψ′(N − 1) such that {ϕ(N − 1)} QN−1 {ψ′(N − 1)}

holds whenever {ϕ(N − 1)} PN−1 {ψ(N − 1)} holds. This allows us to reduce proving

{ϕ(N)} PN {ψ(N)} to proving an appropriate Hoare triple over Peel(PN). Significantly,

relational full-program induction can be used to prove properties of programs beyond the

reach of full-program induction, such as those with nested loops and branch conditions

dependent on N . We describe a prototype tool called Diffy that implements these ideas.

We present results comparing the performance of Diffy with that of various state-of-

the-art tools. Diffy significantly outperforms the winners of SV-COMP 2019, 2020 and

2021 in the ReachSafety-Arrays sub-category.
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Chapter 1

Introduction

Software systems touch almost every aspect of human life, making software immensely per-

vasive. Software that controls modern-day industrial and household appliances is becom-

ing increasingly complex. The code to program such software’s functionalities extensively

uses loops and conditional statements, among other programming language constructs.

Different data structures such as arrays, vectors, maps, and lists are used to store and

process data during the execution of modern software. Programs with loops that ma-

nipulate arrays are quite common in many such software. The functionalities of these

applications are notoriously difficult to program correctly. Testing the software using

budgeted resources on all inputs and relevant scenarios is time-consuming and practically

impossible. As a result, bugs often go undetected, even when these software systems are

deployed in the field. Any malfunction in such software can lead to catastrophic outcomes,

including serious financial losses as well as loss of human lives (depending on the applica-

tion). Ensuring correctness of such software before its deployment is thus of paramount

importance.

One of the grand challenges in computer science is to automatically prove the cor-

rectness of industry scale software. Despite the undecidability of the problem in its full

generality, the ability to prove special classes of properties for special classes of programs

has been crucial for the successful deployment of high quality software in applications

where the cost of bugs is very high. Indeed, over the last five decades, significant ad-

vances have been made in the science and practice of program verification. Yet we are far

away from having satisfactorily solved the software verification problem. State-of-the-art

verification tools and techniques often generate imprecise results or do not scale to real-life



software systems. This thesis contributes to the existing body of knowledge by introduc-

ing three new techniques for program verification that are particularly suited for proving

properties of programs with loops that manipulate arrays of parametric size. Specifically,

we adapt the principle of mathematical induction in different ways to design precise and

scalable verification techniques. We exploit source-level syntactic and semantic features

of programs that manipulate arrays to prove user-specified properties in a compositional

and property-driven way.

1.1 Motivation

The techniques designed in this thesis are a consequence of our attempts at certifying

correctness of programs, initially from an industrial code-base in the automotive domain,

and later from a software verification competition as well as the test-suites of relevant

state-of-the-art tools. The code extensively uses arrays of parametric size to program

various operations, which in case of industrial code are of safety-critical in nature.

In the literature, techniques based on different paradigms have been proposed to

tackle the problem of verifying safety properties of array-manipulating programs. These

techniques include inference of (quantified) inductive invariants, abstraction-based meth-

ods, and logic-based reasoning techniques, among others. However, these techniques face

several challenges while attempting to solve the verification problem. Automatically infer-

ring precise invariants is often challenging, predominantly when programs have complex

control flows and sequentially composed and nested loops. Many techniques are unable

to produce the right level of abstraction to prove the specified property or are unable to

refine the proposed abstractions. Relying solely on dedicated back-end solvers is not a

magic bullet for the verification problems encountered in practice. Moreover, the existing

techniques may not always scale to the level of complexity the problem offers and often

exceed the specified time and memory limits for proving correctness. This highlights the

need for automated techniques for verifying safety properties of programs that manipulate

arrays of parametric size that can scale without compromising on precision.

The reasons mentioned above have spurred interest in devising techniques based on

the principle of mathematical induction for verifying correctness of programs [SSS00],

especially for proving properties of arrays [SB12]. Induction provides scalability while
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retaining precision of the analysis. This makes induction-based techniques quite powerful

and efficient. However, their Achilles heel is the automation of the inductive argument.

Automating the induction step and expanding the class of array-manipulating programs

to which induction-based techniques can be applied forms the primary motivation for the

set of techniques proposed in this thesis. In the following section, we meticulously state

the verification problem and present a couple of array-manipulating programs that the

state-of-the-art techniques are often unable to verify.

1.2 Problem Statement

We consider programs that manipulate arrays and scalar variables within (possibly nested)

loops and conditional branch statements. A special symbolic integer parameter N (> 0)

parameterizes the programs. We use PN to denote such programs, where the subscript

indicates the special parameter. These programs do not modify the value of the symbolic

parameter N but can freely use the parameter in expressions, including loop termination

conditions and conditional branches. The size of arrays in PN is a linear expression

involving the parameter N . We consider pre-condition formulas, denoted as ϕ(N), that

constrain the range of values of inputs to PN and post-condition formulas, denoted as

ψ(N), that constrain the values computed after executing PN . ϕ(N) and ψ(N) are from

a sub-class 1 of quantified and quantifier-free formulas. We restrict our attention to

formulas where the quantification is on array indices and not on the arrays themselves.

We aim to design techniques that can automatically verify that ψ(N) indeed holds after

executing PN given that ϕ(N) holds on the input values. We view the verification problem

as proving the validity of the Hoare triple [Hoa69] {ϕ(N)} PN {ψ(N)} for all values of

N (> 0). We defer a detailed formalization of such parametric Hoare triples to Section 3.4.

We now present two illustrative parametric Hoare triples in Fig. 1.1.

The program in Fig. 1.1(a) has three sequentially composed loops that update an

array A. The first loop increments each cell of A by the value of the program parameter

N . In the body of the second loop, there is a branch condition that evaluates to true

only if the program parameter N takes an even-numbered value. Each element of A is

incremented by 2 along the then branch and by 1 along the else branch. The third loop

1Refer Section 3.4 for a detailed description of the class of formulas supported by our techniques.
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// assume(∀x∈[0,N) A[x] = N)

1. void branch(int A[], int N)

2. {

3. for (int i=0; i<N; i++)

4. A[i] = A[i] + N;

5. for (int j=0; j<N; j++)

6. if(N%2 == 0)

7. A[j] = A[j] + 2;

8. else

9. A[j] = A[j] + 1;

10. for (int i=0; i<N; i++)

11. A[i] = A[i] + 2;

12. }

// assert(∀x∈[0,N) A[x]%2 = N%2)

(a)

// assume(∀x∈[0,N) A[x] = N)

1. void nested(int A[], int N)

2. {

3. int S = 0;

4. for(int i=0; i<N; i++)

5. for(int j=0; j<N; j++)

6. if(i+j < N)

7. S = S + A[i+j];

8. for(int k=0; k<N; k++)

9. for(int l=0; l<N; l++)

10. A[l] = A[l] + 1;

11. A[k] = A[k] + S;

12. }

// assert(∀x∈[0,N) A[x] = N×(N+5)/2)

(b)

Figure 1.1: Challenging Verification Problems with Branch Conditions and Nested Loops

increments each element of A by 2. The pre-condition of this program states that each

element of A has the same value as the program parameter N and the post-condition

asserts that, after the execution of the program, the elements of array A and the program

parameter N have the same parity.

The program in Fig. 1.1(b) has a couple of sequentially composed nested loops that

update arrays and scalars. The scalar variable S is initialized to 0 before the first nested

loop starts iterating. The first nested loop computes a recurrence in variable S. If the sum

of indices of the outer and the inner loop is less than N , then the element of array A at the

index given by this sum is added to S. The inner loop of the second nested loop increments
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each cell of A by 1 and the outer loop increments each cell by S. The pre-condition of this

program states that each element of A has the same value as the program parameter N

and the post-condition asserts that, after the execution of the program, each element of

A has the value given by the non-linear expression N × (N + 5)/2.

Verifying the parametric Hoare triples shown in Fig. 1.1 is challenging given the

nature of the program and the specified properties. Existing state-of-the-art tools and

techniques are often unable to verify the given post-conditions in such Hoare triples. In

the subsequent section, we give a glimpse of our techniques for verifying such Hoare triples,

highlight the obtained results, and summarize the core contributions made in this thesis.

1.3 Contributions

The main contribution of the thesis are three compositional and property-driven induc-

tive verification techniques. These techniques exploit syntactic and semantic features of

programs that manipulate arrays to enable inductive reasoning. Each technique uses dif-

ferent features from program constructs at different granularity levels and is extremely

well suited for a specific class of programs and properties. While each devised technique

has its own limitations as well, these limitations present challenges that act as a motivation

for research and design of the subsequent ameliorated technique.

In the first part of our work, we focus on programs that access and update arrays

using complex index expressions within loops but do not accumulate array content in

scalar variables. We restrict our attention to verifying a sub-class of universally quantified

properties of such programs, which is a challenging task in general. We begin the pursuit

of our thesis by exploring syntactic and semantic features of the loop under analysis for

automating the inductive argument. We ask the following question:

Can we identify ranges of indices an array where modifications by a single generic

loop iteration are confined and use this information to inductively prove universally

quantified properties?

We answer the above question in the affirmative by capturing array-access patterns

in a loop using predicates that we refer to as tiles and using them in our technique

that inducts on individual iterations of a loop. Applying the technique to nested and
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sequentially composed loops requires inference of (possibly quantified) invariants between

such loops and separate inductive reasoning for each loop. Inability to tile arrays in

certain programs, necessity of generating invariants and separate induction for each loop

may act as bottlenecks for this approach.

Next, we focus on the dual objectives of alleviating the problem of automatically

inferring invariants between loops as well as relaxing the class of programs and properties

amenable to inductive reasoning. In the second part of our work, the programs access

and update arrays and may accumulate array content in scalar variables. Further, the

post-conditions are from a sub-class of quantified as well as quantifier-free formulas. In

accordance with the objectives stated above, we ask the question:

For programs that process arrays of parametric sizes, can we induct on the program

parameter while treating the program as a whole, instead of inducting on iterations

of individual loops in the program?

We explore and use syntactic features of such programs to design a novel technique,

called full-program induction, that inducts on the entire program via a program parameter

N (typically the array size). Specifically, we compute the difference of programs with

different values of parameter N during the inductive step. Interestingly, in several cases,

this difference can be derived from the peeled iterations of loops. The technique essentially

reduces the reasoning about a class of programs with multiple sequentially composed

loops to reasoning about a loop-free program containing only the peeled iterations of

loops. Significantly, it does not require generation and use of loop-specific invariants.

The peeled iterations of loops as the difference may not suffice to verify a more general

class of programs. Hence, we next ask the following question:

Is it possible to generalize the difference computation required for inductive reasoning

on the entire program after lifting all the restrictions imposed on the dependencies?

We devise algorithms to automatically compute the dependence of variables and

arrays in the program on the program parameter N . We perform non-trivial transfor-

mations on the given program and the pre-condition to generate their difference while

taking into account such dependencies on N . The inductive step of full-program induc-

tion then uses the generalized difference computation algorithms. However, for certain
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classes of programs, computing the difference program can at times be quite challenging.

This prompts us to ask the following question:

Can the technique of full-program induction be adapted to make use of additional

invariant information that may be easily obtained from an analysis of the program?

In the third part of our work, we explore semantic features of array-manipulating

programs to design a technique called relational full-program induction. In particular, we

use specific kind of relations, called difference invariants, that relate the corresponding

variables and arrays between a pair of closely related versions of the same program.

This makes it possible to simplify the process of generating the difference programs.

Specifically, the difference programs now consist of only the peeled iterations of loops.

The technique can handle programs with nested loops and branch conditions dependent

on the program parameter N . Most notably, the technique is relatively complete for a

specific class of programs.

In the following subsections, we give further insights into our techniques aimed at

affirmatively answering the questions stated above and achieving the associated objectives.

We also highlight the contributions made through each inductive reasoning technique.

1.3.1 Compositional Inductive Verification by Tiling

Programs use complex index expressions to read and update array content in loops. Such

programs often occur in safety-critical applications. Verifying universally quantified prop-

erties of such programs is important. However, the access patterns may not be easy to

capture and reason with, making the verification task more challenging. This motivates

the need for a technique that can incorporate array-access patterns in the analysis.

Consider the program shown in Fig. 1.2 that updates an array A of parametric size

within a loop using different index expressions. We need to verify that the given quantified

post-condition holds after the execution of the program.

As our first contribution, we have devised a novel verification technique based on

tiling the loops in the program. We observed that in such programs a single iteration of a

loop typically only ensures that the desired post-condition holds over a small region/slice

of the array. To capture this region of the array at which the contribution of a generic
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// assume(true)

1. for (l=0; l<N; l=l+1)

2. if ((l == 0) || (l == N-1))

3. A[l] = THRESH;

4. else

5. if (A[l] < THRESH) {

6. A[l+1] = A[l] + 1;

7. A[l] = A[l-1];

8. }

// assert(∀i∈[0,N) A[i] ≥ THRESH)

Figure 1.2: An Example to Motivate Verification by Tiling

loop iteration occurs, we proposed the concept of tiles2. For the example in Fig. 1.2, the

loop updates the indices of A in the range [l, l+1]. However, observe that it suffices to

focus only on the updates at index l, making [l] the tile for array A.

We infer tiles from the array-access patterns in such loops using simple heuristics. We

check that the composition of tiles for each loop iteration covers the entire range of array

indices referred in the post-condition of the loop. We perform induction on the iterations

of each individual loop in the program by focusing on a specific slice of the array updated

in the iteration. During the inductive step, we consider the post-condition on the specific

slice of the array as indicated by these tiles. We also verify that the post-condition on

the slice of an array pertaining to each prior loop iteration continues to hold at the end

of the generic iteration under analysis. Essentially, the technique reduces the problem of

checking a quantified post-condition at the end of a loop to an inductive argument that

checks only a slice of the post-condition for a single iteration of the loop body.

We extend our technique to programs with nested and sequentially composed loops

in a compositional way. We automatically generate and prove loop-specific quantified

2Note that unlike the loop tiling optimization [Muc97] performed by compilers that transform array

accesses and explicitly partition the computation within a loop, possibly by transforming a non-nested

loop to a nested one, aimed at optimizing memory/cache performance, we are only concerned with the

identification of a region in an array that pertains to a generic loop iteration and use it to simplify the

verification problem. The memory/cache size and its performance do not have any influence on our

technique.
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invariants on arrays modified in each loop of the program. We use a guessing mechanism

to infer such invariants. We prove invariants at the end of each loop using our technique

prior to using them as pre-condition to the next sequentially composed loop.

We have implemented the compositional inductive verification technique based on

tiling arrays in a prototype tool called Tiler. We built the program transformations

in our tool using the CLANG front-end bundled with the LLVM compiler framework.

The tool uses Z3 SMT solver for checking the satisfiability of first-order logic formulae

and CBMC for bounded model checking of the transformed programs. We present an

experimental evaluation on a large suite of benchmarks from industrial code-base and

academic test-suites. From the experimental results, we observed that Tiler outperforms

the state-of-the-art verification tools for array programs such as Booster, Vaphor, and

the abstraction-based model checker SMACK+Corral.

The central technical contributions made through this technique are summarized as

follows.

• A novel concept of tiles that formalizes the regions of an array capturing the con-

tribution of a single loop iteration.

• A sound technique for verifying a sub-class of universally quantified post-conditions

of array-manipulating programs using the inferred tiles.

• A prototype tool, Tiler, that implements compositional verification by tiling and

an experimental evaluation on an exciting suite of benchmarks from industry and

academia demonstrating that Tiler outperforms state-of-the-art tools that verify

array-manipulating programs.

Our concept of tiles and the method for extracting and using the tile predicates to

capture regions of arrays are different from the loop tiling compiler optimization [Muc97],

and more importantly their goals are not aligned. The aim of our technique is to improve

verification efficiency, while the latter is aimed at improving the runtime performance

of the program. Our technique offers several advantages over the state-of-the-art tech-

niques such as scalability, compositionality, automatability, efficiency, precision and it

is property-driven. The identification of tiles and inference of loop-specific invariants for

compositional reasoning may be quite challenging at times depending on the computation
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in the program. We overcome these challenges using the technique presented in the next

subsection.

1.3.2 Verification by Full-Program Induction

The technique based on the use of tiles of array-access patterns to reason about individual

loops in the program is quite interesting. However, it faces several challenges while proving

properties of array-manipulating programs.

// assume(∀i∈[0,N) A[i] = 0)

1. S=2;

2. for(t1=0; t1<N; t1++)

3. A[t1] = A[t1] + S;

4. for(t2=0; t2<N; t2++)

5. S = S + A[t2];

// assert(S = 2×(N + 1))

Figure 1.3: An Example to Motivate Verification by Full-Program Induction

Consider the Hoare triple in Fig. 1.3. The program in the Hoare triple has two

sequentially composed loops. The first loop updates an array A and the second loop

accumulates the content of A into the scalar variable S. The technique of verifying a

program by tiling arrays faces the following challenges in proving the given post-condition.

First, it is not always possible to capture the contribution of a generic iteration towards

the given post-condition. For example, the second loop of Fig. 1.3 accumulates array

content into a scalar variable, making it unamenable to tiling. Second, the technique is

restricted to a sub-class of universally quantified post-conditions and it does not support

verifying quantifier-free post-conditions on scalar variables, as shown in Fig. 1.3. Third,

the inductive reasoning must be applied to each loop separately. Last and most important,

the technique needs to generate invariants on arrays between loops in the program.

As our second contribution, we have devised a novel verification technique called full-

program induction (FPI), that addresses the above mentioned challenges. The technique

proves a sub-class of quantified as well as quantifier-free post-conditions of programs

that manipulate arrays of parametric size N . Instead of inducting on individual loops,
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the technique inducts over the entire program (possibly containing multiple sequentially

composed non-nested loops) directly via the program parameter N . In the base case,

the technique proves the parametric Hoare triple for a fixed constant value of N(> 0),

say N = 1. As the induction hypothesis, FPI assumes that the parametric Hoare triple

{ϕ(N −1)} PN−1 {ψ(N −1)} holds. To enable the inductive step of the analysis, we have

come up with the notions of difference program (that relates PN and PN−1) and difference

pre-condition (that relates ϕ(N) and ϕ(N − 1)). When variables and arrays used in the

program have dependencies that satisfy specific conditions, the difference program consists

of just the peeled iterations of loops. As a consequence, for certain classes of programs,

the computed difference program is loop-free, and hence, much simpler to analyze than

the given program, resulting in a significant simplification of the proof obligation. For

the Hoare triple in Fig. 1.3, just the peels of both the loops suffice as the difference

program, which is much easier to reason with. During the inductive step, the technique

infers predicates to strengthen the pre- and post-conditions when the proof goal is not

immediately provable. Note that FPI does not require the generation or use of loop-

specific invariants and the proof goals generated during FPI differ significantly from those

generated while inducting over individual loops (as in verification by tiling).

We make the following vital technical contributions through the technique briefly

described above.

• A novel full-program induction technique to verify a sub-class of quantified and

quantifier-free properties of programs that manipulate arrays of parametric size

without the need for generation and use of loop-specific invariants even when the

program contains multiple sequentially composed loops.

• Notions of difference program and difference pre-condition that enable the inductive

step of the analysis.

• Practical algorithms for performing full-program induction, their rigorous correct-

ness proofs and detailed demonstration on examples.

1.3.3 Generalized Difference Computation

In general, the variables and arrays computed in a program may have dependencies that

do not satisfy the conditions required to use a simple difference program that consists
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of only the peeled iterations of loops. We overcome this limitation by identifying such

dependencies and generalizing the difference computation.

// assume(∀i∈[0,N) A[i] = 1)

1. S=0;

2. for(t1=0; t1<N; t1++)

3. S = S + A[t1];

4. for(t2=0; t2<N; t2++)

5. A[t2] = A[t2] + S;

6. for(t3=0; t3<N; t3++)

7. S = S + A[t3];

// assert(S = N×(N+2))

Figure 1.4: An Example Highlighting the Need for Generalizing the Difference Computation

Consider the Hoare triple in Fig. 1.4. The program in the Hoare triple has three

sequentially composed loops. The first and third loops accumulate the content of array A

into the scalar variable S, while the second loop updates A using the value in S computed

at the end of the first loop. Notice that when the last iteration of each loop is peeled, the

update to A in the second loop would have a dependency on the computation in the peel

of the first loop. As a result, just peeled iterations of loops do not suffice as the difference

program.

We generalize the computation of difference programs to address this challenge. We

identify variables and arrays that have a dependence on values computed in peeled it-

erations or on the value of N . We automatically generate code to rectify the values of

such variables and arrays during the inductive step of full-program induction. This is

a non-trivial program transformation, enabling the technique to compute the difference

program for a class of programs where the dependence on values in peels and N are not

restricted. We also generalize the computation of the difference pre-conditions. Further,

we recursively apply the generalized program transformations to reduce the complexity

of the assertion checking problem. We devise a metric to indicate the need of applying

inductive reasoning at each recursive iteration. This enables full-program induction to

prove post-conditions for a larger class of programs and properties. With these general-

izations, FPI successfully proves the Hoare triple in Fig. 1.4. The technique retains the
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feature that it does not generate or use loop-specific invariants.

To assess the efficacy of the full-program induction technique, we have developed a

prototype tool called Vajra. We demonstrate the performance of Vajra vis-a-vis several

state-of-the-art tools on a large set of array-manipulating benchmarks from the interna-

tional software verification competition (SV-COMP) and on several programs inspired by

algebraic functions that perform polynomial computations.

We summarize the principal technical contributions made through the technique

described above as follows.

• A generalized difference program computation algorithm and its integration with

the full-program induction technique.

• Generalizations of the full-program induction technique to programs with multiple

parameters and loops with increasing and/or decreasing loop counters.

• A metric to measure the progress of full-program induction and an algorithm to

compute the same based on the characteristics of the difference program.

• A prototype tool, Vajra, that implements full-program induction in its generality

and extensive experimental evaluation on a large suite of benchmarks that manip-

ulate arrays, demonstrating that Vajra outperforms several state-of-the-art tools.

1.3.4 Relational Full-Program Induction

The difference program generated during full-program induction may not be simple enough

to reduce the verification complexity. Further, computing the difference program can at

times be quite challenging for certain classes of programs. We take these limitations as

the primary motivation for designing the next inductive verification technique.

Consider the Hoare triple in Fig. 1.5 with two sequentially composed loops. The first

loop in the program accumulates the content of A into the scalar variable S and the second

loop updates an array B using the value of S. Both, variable S and array B have either a

dependence on N or on a value computed in a peel. Hence, additional code needs to be

generated to rectify their values. The difference program must consist of two loops, one

loop each for rectifying the values of S and B. Automatically generating such difference

programs with loops is challenging. Further, the effort required for verifying the given
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// assume(∀i∈[0,N) A[i] = N)

1. S=0;

2. for(t1=0; t1<N; t1++)

3. S = S + A[t1]*A[t1];

4. for(t2=0; t2<N; t2++)

5. B[t2] = S + t2;

// assert(∀j∈[0,N) B[j] = N3 + j)

Figure 1.5: An Example Motivating the Need for Relational Full-Program Induction

program and the difference program will be the same, since both the programs will have

two loops.

We ameliorate the full-program induction technique in a way that we can use the

program with just the peeled iterations of loops, as the difference program even for pro-

grams with nested loops and branch conditions dependent on the program parameter N .

As our third contribution, we have devised a novel verification technique called relational

full-program induction. The technique constructs two slightly different versions of the

same program namely (i) PN−1 by substituting N with N − 1 in PN and (ii) QN−1 by

peeling each loop in the program and propagating each peel across subsequent code blocks.

We infer relations between the corresponding variables at key control points of the joint

control-flow graph of programs PN−1 and QN−1. The inferred relational invariants are typ-

ically much simpler than the inductive invariants required for proving the post-condition

directly and are easy to synthesize. We use these relations, along with the post-condition

ψ(N − 1), to infer a formula ψ′(N − 1) that holds as the post-condition of QN−1. The

inferred post-condition is then used to formulate the inductive step of the analysis. We

restrict the invariants to use only the differences between the values of corresponding

variables/arrays in PN−1 and QN−1. We call such relations as difference invariants and

study their effectiveness. We use Dijkstra’s weakest pre-condition computation to infer

predicates for simultaneously strengthening the pre- and post-conditions of the program.

Relational full-program induction successfully proves the Hoare triple in Fig. 1.5.

We have implemented a prototype tool called Diffy to demonstrate the efficacy of

relational full-program induction. We have built Diffy on top of the LLVM compiler

framework and the Z3 SMT solver. We compare Diffy vis-a-vis state-of-the-art tools
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for verification of C programs that manipulate arrays on a large set of benchmarks. Our

synergistic combination of inductive reasoning and finding simple difference invariants

helps prove properties of programs that cannot be proved even by the winner of the

Arrays sub-category from SV-COMP 2021.

The primary technical contributions made through this technique are summarized

as follows.

• A novel technique called relational full-program induction, to prove a sub-class of

quantified and quantifier-free properties of array-manipulating programs with nested

loops and branch conditions dependent on N .

• The concept of difference invariants that relates the two versions of variables/arrays

using only differences between values of variables/arrays.

• Algorithms to perform relational full-program induction, including novel program

transformations and inference of difference invariants.

• A prototype tool Diffy that implements the relational full-program induction tech-

nique and experiments demonstrating that Diffy significantly outperforms the win-

ners of SV-COMP 2019, 2020 and 2021 in the ReachSafety-Arrays sub-category.

While the proposed techniques have different strengths and limitations, they essen-

tially boil down to the same core idea, that applies inductive reasoning to verify the

given property, when the given program consists of only a single loop. Our techniques

are orthogonal to different verification techniques proposed in the literature. Most such

state-of-the-art techniques for checking correctness are aimed at proving special classes

of programs and properties. Existing tools, therefore, use a combination of verification

techniques that work well for certain classes of programs and assertions, and yield conser-

vative results otherwise. Hence, rather than stand-alone use, we envisage the inductive

reasoning techniques proposed in the thesis to be used as part of a portfolio of tech-

niques in a modern software verification tool. We have designed and implemented our

techniques in a way that they can be integrated seamlessly into other verification portfo-

lios/frameworks. The extensive experimental evaluations demonstrate the efficacy of our

tools and techniques vis-a-vis state-of-the-art tools used to verify array programs. We
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show later that industrial verification frameworks use our tools and techniques to prove

program correctness in practice and in verification competitions.

1.4 Thesis Organization

The rest of this thesis is organized as follows.

In Chapter 2, we present a high-level overview of the prior state-of-the-art techniques

proposed in the literature that are related to our work, along with the advantages and

drawbacks that these technique have to offer. Readers familiar with the prior literature

in the area can skip Chapter 2.

Chapter 3 discusses the preliminaries, making it a prerequisite for the subsequent

chapters in the thesis. The individual chapters refer to different parts of Chapter 3 where

the necessary background and notational details are presented.

We expand the four subsections in Section 1.3 into Chapters 4, 5, 6 and 7. Each

chapter presents in detail the problem under consideration, motivates the importance

of the problem, describes the proposed solution, highlights the salient features of the

technique, describes an implementation of the technique in a tool and gives a detailed

experimental evaluation. We cite at the beginning of each chapter, the peer-reviewed

conference and/or journal publication associated with the technique. Chapter 5, is a

prerequisite for Chapter 6. Chapters 4, 5, and 7, however, have minimal dependence on

one another and can be read linearly or in any order.

Chapter 8 concludes the thesis and presents several prospective directions for fur-

ther research in designing inductive verification techniques to prove the correctness of

parametric programs that manipulate arrays and other data-structures.
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Chapter 2

Related Work

This chapter discusses different analysis and verification techniques proposed in the liter-

ature to prove the properties of programs that manipulate arrays. We compartmentalize

the techniques and briefly describe how each technique approaches the problem.

2.1 Abstraction-based Techniques

Automated abstraction refinement techniques are amongst the most popular techniques

for verifying programs that manipulate arrays.

Mann et al. [MIG+21] propose a counterexample-guided abstraction refinement scheme

using auxiliary variables to verify properties of infinite-state systems with arrays. The

technique uses two types of auxiliary variables. History variables preserve past values;

prophecy variables refer to future values and are dual to history variables. During re-

finement, the method instantiates the violations of array axioms in the returned coun-

terexample of size k. They use auxiliary variables to lift these instantiated axioms to

the transition system, using the prophecy and history variables acting as universally and

existentially quantified variables, respectively. Refinement ensures that the resultant ab-

straction has no counterexamples of size k. If the method terminates, it produces a proof

or a valid counterexample. In general, k may be arbitrarily large, making it impossible to

rule out all spurious counterexamples of any length. Thus, the method does not guarantee

that it will eventually terminate. Identifying appropriate history and prophecy variables

is also a challenge. Their method relies on heuristics to choose auxiliary variables. At

times these heuristics are quite sensitive to the encoding syntax.
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Bueno et al. [BCS20] propose an abstraction refinement algorithm for integrating

array abstraction into incremental inductive model checking. They model arrays using

uninterpreted functions. The technique utilizes interpolants for finding violated axioms

during refinement. The method uses a lazy array axiom instantiation technique to re-

fine the abstraction. It learns array lemmas only when they are absolutely required to

(dis)prove the property. The method thus exercises greater control on the theory reason-

ing performed in the back-end SMT solver of the underlying model checker by postponing

the costly array theory reasoning to the refinement step. A drawback of the method is

that it cannot infer universally quantified invariants.

VeriAbs [ACC+20] deploys a sequence of strategies to verify universally quantified

and quantifier-free properties in C programs. Each strategy consists of multiple tech-

niques. Specifically for programs with arrays, it employs pruning and shrinking abstrac-

tions which identify loops that can be abstracted using a bounded number of iterations.

The tool reports a program safe when a bounded model checker verifies the abstracted

program. If the model checker reports a violation, then a subsequent abstraction tech-

nique in the sequence is employed to check the program’s safety. As we show later, the

techniques developed in this thesis are a part of the strategy in VeriAbs to verify array

programs. As a last resort in the strategy, it tries to verify the original program using a

bounded model checker with a fixed timeout value. The loop unwinding count is doubled

after each timeout to overcome the unwinding assertion failures. Each abstraction-based

technique in the strategy differs in the precision of abstraction and has limited ability to

refine the abstraction automatically.

Vaphor [MG16] uses an approach that over-approximates array operations for prov-

ing universally quantified properties of programs. The approach tracks a bounded number

of array cells by transforming the given program with arrays to an array-free system of

Horn clauses. The generated system of Horn clauses may be non-linear, i.e., its un-

folding will produce a tree. The method can also abstract programs with maps, sets,

and multi-sets. Any Horn clause solver such as Z3 [MB08], Spacer [KGC14] and El-

darica [RHK13] can be plugged-in with their method to verify the generated array-free

system of Horn clauses. One of the method’s drawbacks is that it cannot automatically

infer the number of array cells to track to prove the given property and relies on user in-

put instead. For certain classes of programs, the abstraction may not be precise enough,
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especially when the updates to the array happen at non-sequential indices, for example,

when reversing the array content. Their method does not have a refinement loop that

can automatically adjust the precision of the abstraction by targeting the relevant set of

array indices.

Model-Checking Modulo Theories (MCMT) [GR10] extend model checking to array-

manipulating programs. The method generates quantifier-free safety proofs in the first-

order theory of arrays by eliminating a selected set of universally quantified terms. A pro-

cedure that combines SMT-based lazy abstraction with interpolation for arrays [BGR12,

ABG+12a] is used for these purposes. The technique is implemented in Safari [ABG+12b].

They further improve the procedure by introducing acceleration for array programs [BIK10,

JSS14] and is implemented in Booster [AGS14]. For a class of programs, computing

simple interpolants is challenging. The technique faces an uphill task while proving such

programs.

Techniques in [MA15, JM07, DDA10, GRS05, HP08] propose partitioning the set of

array indices to prove quantified properties. Abstractions in [MA15, JM07] partition the

range of array indices to infer and prove facts on the partitioned array segments. Anal-

yses proposed in [GRS05, HP08] partition the array into symbolic slices and abstracts

each slice with a numeric scalar variable to prove facts about entire arrays. Fluid up-

dates [DDA10] uses bracketing constraints, which are over- and under-approximations of

indices, to specify the concrete elements updated in an array without explicit partitioning.

While their abstraction is independent of the given property, the assumption that only a

single index expression updates the array in each loop severely restricts the technique.

2.2 Invariant Generation

Invariants play a crucial role in formal verification. A significant amount of research work

has thus gone into automated invariant generation methodologies. Numerous techniques

work to produce quantified invariants for programs, and some of these techniques prove

the properties of programs that manipulate arrays.

Abstract interpretation [CC77, Cou03] is a sound framework for program analysis

that can compute the properties of programs. The abstract domains supported by the

abstract interpreter determine the kind of invariants the method can compute. [CCL11]
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presents a way of designing a parametric quantified abstract domain and its use for com-

puting invariants over arrays. The abstract domain utilizes cell contents to split array cells

into groups. It semantically divides arrays into consecutive non-overlapping segments and

abstracts each segment during the analysis. The technique in [LR15] is especially use-

ful when array cells with similar properties are non-contiguously present in the array.

Templates are often employed within the abstract interpretation framework to focus the

search. [GMT08] searches for inductive invariants, possibly with alternating quantifiers,

by instantiating the parameters of a fixed set of user-supplied templates within the ab-

stract interpretation framework. The method uses the abstract domain of uninterpreted

functions that incur an extremely high cost of generating invariants. Extensive efforts are

required to design and implement new abstract domains and for the the implementation

of abstract transformers for each specialized domain. This makes such techniques less

appealing in practice.

Predicate abstraction [GS97, FQ02] is a framework that builds abstractions with

varying degrees of precision and complexity, automatically tuned to the program and

property. Often heuristics are used to infer predicates in a counterexample guided ab-

straction refinement framework [CGJ+00]. [LB04] infers quantified invariants over ar-

rays using predicate abstraction. Templates can be employed to focus the search for

predicates [SG09]. The property directed reachability (PDR) technique pioneered in

IC3 [Bra11, SB11, Bra12] and extended to quantified invariants in UPDR [KBI+17] and

QUIC3 [GSV18], takes the post-condition into consideration while incrementally finding

inductive invariants. It uses the verification goal to direct the search for predicates in a

predicate abstraction-based framework. It employs heuristics to generalize the predicates

to inductive invariants. UPDR [KBI+17] focuses on the effectively propositional fragment

(EPR) of first-order logic with equality and uninterpreted functions in which the satisfi-

ability of quantified formulas is decidable. QUIC3 [GSV18] extends the IC3 framework

to a combination of SMT theories. It performs lazy quantifier instantiations and model

based projections on programs specified as Constrained Horn Clauses (CHCs). [SGSV19]

presents a property-directed invariant inference algorithm based on predicate abstraction

that infers composition-invariant pairs for proving k-safety properties of programs with

arrays and can establish that no such invariant exists when the property does not hold.

Many tools have used constraint solving for inferring invariants. The inference prob-
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lem is reduced to solving a set of constraints that encode the program in a decidable

fragment of first-order logic. Consequently, such techniques face a trade-off between the

expressiveness and decidability of the underlying logic fragment. Further, the system of

constraints generated from a program with linear arithmetic expressions is often non-

linear. Hence, the form of invariants that can be inferred by relying on a constraint

solving method is usually pre-defined. InvGen [GR09] infers Boolean combinations of

linear arithmetic invariants by solving, possibly non-linear, constraints. It uses a combi-

nation of static analysis and dynamic execution to speed up and scale constraint solving.

Inference of invariants with non-linear inequalities has been studied in [SSM04]. It relies

on Gröbner bases to represent a set of non-linear constraints in the parametric linear

form. The method can handle programs with branch conditions without the need to

abstract the conditional expressions in the branch with non-deterministic choices. Log-

ical fragments with quantification are considered less often as most of the time they

turn out to be undecidable. The technique in [BHMR07] proposes a template-based con-

straint solving approach to infer invariants over arrays by expressing the program using

the combined theory of linear arithmetic and uninterpreted function symbols. However,

this technique is not automated for inferring quantified invariants for array-manipulating

programs. Another exception that computes quantified post-conditions over arrays with

respect to the given pre-condition using constraint solving is the technique in [BHI+09].

The method translates the pre- and post-conditions of programs into the Single Index

Logic (SIL) [HIV08] constraints. These constraints along with the program loops, are

compiled to counter automata and transducers for checking entailment. The inferred for-

mulae are decompiled to SIL constraints via a counter automata that is over-approximated

using flat automata with difference bound constraints. Unfortunately, this technique is

not fully-automated, does not compute loop invariants but post-conditions, and does not

support nested loops even in theory.

Theorem proving has been used to infer first-order invariants containing alternations

of quantifiers for programs that manipulate arrays. [McM08] presents a complete method

for generating inductive invariants from universally quantified interpolants obtained by re-

futing unwindings of loops in programs. The method increases the loop unwind count after

each unsuccessful attempt. It restricts the types of clauses used for encoding the problem

and uses a paramodulation-based saturation prover for proving first-order logic formulas
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as well as for generating interpolants. The method in [KV09] extracts properties of loops

in the given program and passes them on to a saturation-based theorem prover to simplify

its task. It does not require guidance in the form of user provide templates, predicates,

or post-conditions. The first-order theorem prover Vampire [HKV11] implements this

technique using the analysis and invariant generation tool Aligator [HHKR10]. These

techniques [McM08, KV09] are limited to programs with non-nested loops and linearly

accessed array elements. [TW16] applies interpolation techniques in combination with

theorem proving to programs. The technique supports invariant inference over expressive

domains that can represent varied data structures. Their interpolation procedures are

complete for theories of arrays and linked lists. However, the technique in [TW16] is not

implemented for arrays and can only handle loops with simple linked list manipulations.

Dynamic analysis has been used for various purposes, including performance analysis,

security analysis, testing, and invariant inference. [SGH+13] uses a data-driven approach

to detect algebraic invariants in programs. Daikon [EPG+07] pioneered the method

for inference of likely invariants using (mostly linear) templates from actual program

runs. The technique in [NKWF12] infers loop invariants with polynomial inequalities and

arrays. One can also use dynamic analysis to generate function summaries. Dynamically

generated function summaries provide for scalable test generation [YUA+13] and proving

properties of programs in a feedback-driven way [YU13, ZYR+14].

A combination of multiple techniques for invariant inference has also been studied

in the literature. DYNAMATE [GFM+15] combines mutation, test case generation,

dynamic invariant detection, and static verification to prove the properties of array pro-

grams. However, it is quite restrictive in the kind of invariants it can infer due to the

limitations of the underlying tools and techniques. [MGJ+19] verifies distributed protocols

by combining model checking and incremental inference of predicates.

Constrained Horn Clause (CHC) solvers have gained traction recently for inferring

universally quantified invariants for programs that manipulate arrays. This includes

the PDR-based invariant generator QUIC3 [GSV18] described previously. The Fre-

qHorn [FPMG19] CHC solver that infers universally quantified invariants from program

syntax and behaviours within the syntax-guided synthesis (SyGuS) framework using the

guess-and-check paradigm. The CHC solver in [BMR13] restricts the quantifier structure

of invariants using templates and relies on quantifier instantiation to infer invariants ex-
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pressed in the theory of arrays with equality. The method deploys instantiation heuristics

such as E-matching and requires only quantifier-free reasoning to infer invariants.

For a detailed technical exposition of the concept of loop invariants, the classical

techniques for invariant generation, and the use of invariants in program verification, we

refer the interested reader to the survey [FMV14].

2.3 Logic-based Reasoning

[BEG+19, GGK20] propose trace logic as a framework to verify relational and safety prop-

erties of programs. Trace logic axiomatizes the semantics of each program statement using

a first-order logic formula. The method precisely captures the semantics at arbitrary time

points. The time points indicate the program locations and loop iterations. To aid the

inductive reasoning in the method, they define the notion of trace lemmas that repre-

sent generic inductive properties over arbitrary quantification over the time points. The

lemmas describe the progression of the values of the loop counter as well as the program

variables and arrays in relation to the time point. It uses a theorem prover to introduce

and prove trace lemmas, specified in trace logic, at arbitrary time points in the program,

such that the lemmas are strong enough to establish the given safety property. Thus,

the method can be thought of as implicitly capturing arbitrarily quantified inductive in-

variants. Rapid [GGK20] implements the described method and can prove properties of

programs containing arrays of arbitrary length that may require invariants with alternat-

ing quantifiers. Interestingly, the method is sound and complete with respect to Hoare

logic.

VIAP [RL18] encodes the given C program into a quantified first-order logic formula

using the translation scheme proposed in [Lin16]. There is a clean separation between

the translation strategy and the use of the translated formula for proving properties.

Further, the translation is independent of the loop invariants. The loops in the program

are translated to a set of recurrence relations. The technique then tries to simplify the

generated first-order axioms (using dedicated solvers and external libraries) and compute

the closed-form solutions of recurrences. The tool uses a portfolio of tactics to prove

the simplified formula obtained after replacing the recurrences with the computed closed-

form solutions. Solving the recurrences for some classes of programs is easy, while it

23



is extremely difficult for other classes. However, some tactics, such as induction, are

useful even when the simplification step is unable to reduce verification complexity. The

technique is useful in proving the safety of user-specified assertions; however, it is not

useful for general purpose invariant generation.

2.4 Inductive Reasoning

Inductive reasoning is one of the fundamental mathematical concepts to approach program

verification, and most first-order theorem provers do not have inbuilt induction ability.

A plethora of techniques have been proposed in the literature that use induction [DM97,

BC00, ES03, GLD09, Bra11, CJRS13, RK15, UTS17] and its pragmatically more useful

version k-induction [SSS00, DMRS03, HT08, DKR10, KT11, DHKR11, BDW15, BJKS15,

GIC17, KVGG19, ARG+21, YBH21]. These techniques implicitly/explicitly generate and

use loop invariants, especially when aimed at verifying the safety properties of programs.

While not all such techniques handle programs with arrays, several efforts have been made

to adapt inductive reasoning to verify quantified properties of programs that manipulate

arrays.

An induction-based approach to prove the properties of programs with arrays is

proposed in [ISIRS20]. The method proves programs correct by induction on a rank,

chosen as the size of program states, which is proportional to the length of the arrays

in the program. It constructs a safety proof by automatically synthesizing a squeezing

function that can map higher-ranked states to lower-ranked states while ensuring that

original states are faithfully simulated by their squeezed counterparts. This strategy

allows the method to shrink program traces of unbounded length, limiting the reasoning

to only minimally-ranked states. A guess-and-check approach combined with heuristics

for making educated guesses is employed for computing the squeezing function necessary

to prove the post-condition in the given program. The successful synthesis of a squeezing

function is equivalent to establishing the inductive step. The user can also supply these

functions. They can be quite useful in practice, for example, to prove programs that

may not have a first-order representable loop invariant. In general, they are not easy to

synthesize, and automatically searching for such functions is non-trivial and exceedingly

time-consuming. As a consequence, the technique is not fully-automated in an end-to-end
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verifier. Further, the squeezing functions can only consist of commutative and invertible

operations, restricting their applicability.

The technique in [SB12] inducts on the loop counter for verifying the given prop-

erty. The method identifies the loop bodies such that one of the symbolic loop bound

on the counter does not syntactically appear in the loop body. These are called recur-

rent fragments. The technique removes loops and quantified assertions in the program

by transforming them to their pre- or post-recursive forms. In the pre-recursive repre-

sentation, the loop is unrolled at the end such that the last iteration follows the loop

wherein the upper bound is reduced by one. The last iteration becomes the object of

analysis as the hypothesis generates a formula that summarizes the initial iterations. In

the post-recursive representation, the loop is unrolled at the beginning such that the first

iteration is followed by the loop wherein the lower bound of the loop counter is increased

by one. For this form, the post condition is also weakened to an implication in which the

antecedent assumes the correctness of the loop starting from the second iteration. This

results in a post-condition that can possibly be simplified to one with fewer quantifiers.

It then inducts over the bound variable appearing in the property. For the technique to

be applicable, at least one of the terms that act as symbolic loop bounds must appear in

the quantified property, and the same term must not occur in the loop body. Further,

the method imposes severe restrictions on the input programs to move the peel of one

loop across the next sequentially composed loop such that the program with the peeled

loops composed with the program fragment consisting of only the peeled iterations is

semantically equivalent to the input program. These restrictions on the input programs

are described as commutativity of statements. In practice, such restrictive conditions and

data dependencies are not satisfied by a large class of programs, making the technique

of [SB12] applicable only to a small part of the program-assertion space.

2.5 Differentiation and Integration

Techniques such as formal differentiation [PK82], differential static analysis [LVH10] and

program integration [HPR89] have been studied in the literature for various purposes.

[PK82] presents a program optimization method to compute finite differences of com-

putable program expressions with an aim of improving the execution time of the optimized
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program. The core idea is that if an expression was available at the entry of a block in the

CFG of the program, then the method attempts to keep the expression available in the

block by performing appropriate modifications to the expression depending on changes to

its parameters such that the cost of computing the entire expression again is saved and

redundant computations are replaced with the available, albeit modified, expression. The

costly calculations performed due to repeated evaluation of the expression within other

expressions are effectively replaced by inexpensive incremental counterparts. Essentially,

the method generalizes the strength reduction optimization. Applications of differencing

for incremental computation of expensive expressions [LST98], optimizing the execution

time of programs that manipulate arrays [LSLR05], reducing the cost of regression test-

ing [Bin92], checking data-structure invariants [SB07] as well as many others have been

studied in the literature. It may be noted that a program optimized for execution time

may not always reduce verification complexity and vice-versa.

SymDiff [LHKR12] is a tool, based on differential static analysis [LVH10], for dis-

playing semantic differences between different versions of a program and checking their

equivalence. The method unrolls loops, if any, up to a user-specified depth during the

generation of SMT-based verification conditions. To achieve modularity in checking, it

replaces procedure calls with uninterpreted function symbols or inlines procedure calls

depending on the required precision. It requires as input a mapping between procedures,

globals, and constants from the two program versions that are checked for equivalence.

SymDiff generates a interprocedural counterexample trace in a procedure that is not

equivalent to its previous version and highlights a path with semantically differing val-

ues. It supports the programming languages that can be translated to the intermediate

(verification) language used by the tool. However, the method neither supports checking

quantified post-conditions nor does it support loops and arrays of potentially unbounded

size. Its scalability is limited by that of the back-end solver.

Different program versions get created during various stages of software development.

Under varied scenarios, a new program version needs to be created that has the common

base functionalities as well as the enhancements from the prior versions of the program

that do not interfere with each other in a well-defined sense. This problem, called program

integration, is formalized in [HPR89]. It aims to provide a semantics-based technique to

automatically integrate the behavioral changes/enhancements in prior program versions
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into an integrated version. The integrated version must satisfy the post-conditions of all

prior versions when their pre-conditions are satisfied. Checking if a modification actually

leads to a behavioral difference in the program is undecidable in general. Hence, the

method approximately determines the changes by comparing a program slice with the

corresponding slice from a prior version. It is further customized to semantics preserving

transformations in [YHR92]. However, the integrated program needs to be examined by a

human and both the techniques are restricted to programs that do not operate on arrays.

Unfortunately, the kinds of differences and integrations computed by the methods

discussed above are not always directly well-suited for verifying properties of programs,

especially for programs that manipulate arrays.

2.6 Analysis Techniques in Compilers

The polyhedral model of computation is a powerful mathematical framework that can con-

cisely capture program executions. Polyhedral analysis techniques are extremely useful for

parallelizing programs. The model has been studied extensively [KMW67, Lam74, Fea91,

Pug91b, Len93, QRW00, Bas04, PBCV07, PBCC08, BBK+08, BPCB10, FL11, MR22,

SSK22, TKA22, ZBY+22, ZLL+22] for performing various optimizations and transfor-

mations. The analysis is widely used for efficiently performing loop optimizations such

as tiling, interchange, shifting, splitting, reversal, skewing, distribution, parallelization,

and so on. The polyhedral model consists of the following three main parts: (i) iteration

domains : to capture multiple execution instances of each statement, (ii) space-time map-

ping functions : to capture the order of execution among statements; also called scheduling

functions, and (iii) access functions : to capture reads and writes to memory cells. Recent

advances represent the inferred program properties as unions of general affine relations.

Over the years, various compilers, analyzers and libraries dedicated to polyhedral

analysis and transformations have been built. The polyhedral model is used to opti-

mize loops in many production level compilers and analyzers such as R-stream [LMS+04,

SLLM06, MBS+22], PolyMage [MVB15], LLVM/Polly [GZA+11], GCC/Graphite [PCB+06,

TCE+10], IBM XL [BGDR10], Chunky Loop Generator (CLooG) [Bas13], Chunky An-

alyzer for Dependences in Loops (CANDL) [BP12], Chunky Loop Alteration Wizardry

(CLAY) [Bas12], Chunky Loop Analyzer (CLAN) [BCG+03], Polyhedral Parallel Code
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Generation for CUDA (PPCG) [VCJC+13], Parallelization and Locality Optimization

Tool (PLuTo) [BHRS08], Composing High-Level Loop Transformations (CHiLL) [CCH08],

as well as many others. The libraries used for polyhedral analysis include the Polyhedral

Library (Polylib) [CL98], Parametric Integer Linear programming solver (Piblib) [Fea88],

Fourier-Motzkin library (PoCC/FM) [Pug91a, Pou10] and Integer Set Library (isl) [Ver10]

among others.

The polyhedral analysis is extremely useful in aggressively optimizing computation,

but has several limitations pertaining to its scope and the class of programs that it is

applied to. The programs amenable to analysis and transformation using the polyhedral

model must have the following characteristics: (i) each loop must have a unique loop

counter, (ii) the instructions accessing memory are limited to scalar variables or elements

of multi-dimensional arrays, (iii) expressions used in branch conditions, loop bounds and

array indices are affine, and (iv) control flow must not be dependent on the data computed

in the program. The expressions in branch conditions, loop bounds and array indices can

have constants, invariant loop parameters and counters of enclosing loops. The presence

of even a single non-affine entity in the program can limit some polyhedral optimizations

in compilers. Further, the polyhedral analysis usually has a high worst-case complexity.

The data dependence analysis performed during such optimizations may not scale to

large programs. These analysis may not take into account the requirements regarding

the granularity of the information required to perform optimizations or establish facts.

Notably, the implementation of the analysis and transformations based on the polyhedral

model are mostly seen in certain parallelizing and optimizing compilers.

Another analysis routinely performed by general-purpose compilers is called scalar

evolution [Eng01]. This analysis can compute closed form expressions for programs that

update variables of integer type. It tries to summarize statements that accumulate values

over several loop iterations. The analysis represents the value of each variable as a chain

of recurrence [BWZ94]. These recurrences are represented as a tuple consisting of the

variable, its initial value, the arithmetic operator used to update its value and the value

by which the variable is updated repeatedly (i.e. the step count). These chains of recur-

rences can be much more expressive than affine expressions. The chains of recurrences are

parametric in the variables whose values are unknown at the compile time and the loop

counter variables at which the recurrence should be evaluated. At a high-level, such an
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analysis may also be used to infer quantified closed form expressions over arrays of para-

metric size. The scalar evolution analysis is also useful for identifying induction variables,

such as loop counters. The LLVM compiler framework provides an implementation of

this analysis as the SCEV pass. The technique implemented in the verifier VIAP [RL18]

identifies recurrences in array-manipulating programs as a part of its methodology. The

tool computes closed forms of the identified recurrences and uses them to simplify the

verification task.
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Chapter 3

Preliminaries

In this chapter, we present the notations and technical concepts used in the subsequent

chapters of the thesis.

3.1 Program Grammar

We analyze programs generated by the grammar shown in Fig. 3.1. A program PN that

manipulates arrays of parametric size is a tuple (V ,L,A,PB, N), where V is a set of scalar

variables, L ⊆ V is a set of scalar loop counter variables, A is a set of array variables, PB

is the program body, and N is a special symbol denoting a positive integer parameter.

PB ::= St

St ::= AssignSt | St;St | if(BoolE) then St else St |

for (` = 0; ` < UB; ` = `+1) { St }

AssignSt ::= v = E | A[IndE] = E

E ::= E op E | A[IndE] | v | ` | c | N

IndE ::= IndE op IndE | v | ` | c | N

UB ::= UB op UB | ` | c | N

op ::= + | - | × | ÷

relop ::= == | < | ≤ | > | ≥

BoolE ::= E relop E | BoolE AND BoolE | NOT BoolE | BoolE OR BoolE

Figure 3.1: Program Grammar
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Here, we assume that A ∈ A, v ∈ V \ L, ` ∈ L and c ∈ Z. We also assume that “op”

(resp. “relop”) is one of a set of arithmetic (resp. relational) operators. For clarity of

exposition, we abuse notation and use V and A to also denote a sequence of scalar and

array variables, when there is no confusion. We wish to highlight the following features

of programs generated by this grammar:

• Programs can have sequences of (possibly nested) loops, with non-looping program

fragments between loops. Furthermore, the body of a loop and the corresponding

loop head, i.e. the node where the loop is entered, are easily identifiable.

• Each loop has a unique scalar loop counter variable `. In each loop L, the counter

` associated with it is initialized to 0 when the loop is entered, and incremented by

1 after every iteration of the loop.

• Each loop L has a termination condition ` < UB. We assume that UB is an ex-

pression in terms of N , constants c and variables in L representing loop counters of

loops that nest L as shown in the grammar.

• Assignments in the body of L are assumed to not update `. The only assignments

to loop counters happen when a loop is entered for the first time and at the end of

an iteration of the corresponding loop body. Other assignment statements in the

program cannot assign to loop counters. The loop counters can however be freely

used in expressions throughout the program.

• The restriction on the usage of loop counter variables simplifies the analysis and

presentation, while still allowing a large class of programs to be effectively analyzed.

Specifically, whenever the count of iterations of a loop can be expressed in a closed

form in terms of constants and variables not updated in the loop, we can mimic

its behaviour using our restricted loops. As a generic example, suppose we are told

that the loop for (i=exp1; Cond; i=exp2) { LoopBody; } iterates exp3 times,

where exp3 is an arithmetic expression in terms of constants and variables used in

exp1 and exp2 but not updated in the loop. The behaviour of this loop can be

mimicked using the following restricted loop, where l is a fresh variable not present

in the original program: for (l=0; l<exp3 ; l=l+1) { if(l=0) { i=exp1; }

if(Cond) { LoopBody; i=exp2; } }.
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To see a specific example of this transformation, suppose the program under verifi-

cation has the loop: for (i=2*N; i>=0; i=i-2) { A[i]=i; A[i-1]=N; }, where

N and i are variables that are used but not updated in the loop body. Clearly,

this loop iterates (N+1) times. Therefore, it can be modeled in our restricted lan-

guage as follows: for (l=0; l<N+1; l=l+1) { if(l=0) { i=2*N; } if(i>=0)

{ A[i]=i; A[i-1]=N; i=i-2; } }.

• The expressions for indexing arrays are generated from the non-terminal IndE, and

such expressions cannot refer to other array elements. However, this is not really a

restriction on the expressive power of programs since every array index expression

that depends on other array elements, say A[e], can be replaced by an array index

expression that depends on temporary variables, say v, that are pre-assigned to the

respective array elements, viz. A[e]. For example, A[B[i]] = C[D[i]]; can be

rewritten as v1 = B[i]; v2 = D[i]; A[v1] = C[v2];.

• There are no unstructured jumps, like those effected by goto or break statements in

C-like languages. The effect of a break statement inside a loop in a C-like language

can be modeled by setting a flag, and by conditioning the execution of subsequent

statements in the loop body on this flag being not set. The effect of a break

statement in a conditional branch can also be similarly modeled. Therefore, we can

mimic this behaviour of break statements in our programs.

To see a specific example of this transformation, consider the loop: for (l=0;

l<N; l=l+1) { A[l]=l; if(l>N/2) { break; } }. It can be modeled in our re-

stricted language as: flag=1; for (l=0; l<N; l=l+1) { if(flag) { A[l]=l;

if(l>N/2) { flag=0; t=l; } } } if(flag==0) { l=t; }, where flag and t are

fresh program variables.

At times a technique may not permit nesting of loops in the input program. The

grammar in Fig. 3.2 restricts programs to have only non-nested loops. Specifically, pro-

grams generated starting from StLF are loop free. The non-terminal St can generate

programs with loops but their bodies are generated from StLF, thereby forbidding nesting

of loops. The non-terminals AssignSt and BoolE are defined in the same way as in Fig. 3.1.
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PB ::= St

St ::= AssignSt | St;St | if(BoolE) then St else St |

for (` = 0; ` < UB; ` = `+1) { StLF }

StLF ::= AssignSt | StLF ; StLF | if(BoolE) then StLF else StLF

Figure 3.2: Grammar for Loop-free Programs

We rely on the notion of the nesting depth of a loop during the discussions in the

subsequent chapters. We define it as follows:

Definition 3.1 NestingDepth(L) is a natural number n that satisfies the following:

• If L does not appear within the scope of any loop, then NestingDepth(L) = 1.

• If L appears within the scope of loops L1, L2, . . . , Lk, then NestingDepth(L) = 1 +

max(NestingDepth(L1), NestingDepth(L2), . . ., NestingDepth(Lk)).

3.2 Control Flow Graph

Programs generated by the grammar described in Section 3.1 are represented by a control

flow graph (or CFG) G = (Locs ,CE , µ), where Locs denotes the set of nodes of the

program, CE ⊆ Locs × Locs × {tt,ff ,U} represents the flow of control, and µ : Locs →

AssignSt∪BoolE annotates every node in Locs with either an assignment statement (of the

form v = E or A[IndE] = E) from those represented by AssignSt, or a Boolean expression

from those represented by BoolE.

We assume there are two distinguished nodes called Start and End (denoted nstart

and nend resp.) in Locs , that represent the entry and exit points of control flow for the

program. An edge (n1, n2, label) represents flow of control from n1 to n2 without any other

intervening node. The edge is labeled tt or ff if µ(n1) is a Boolean condition, and it is

labeled U otherwise. If µ(n1) is a Boolean condition, there are two outgoing edges labeled

tt and ff respectively, from n1. Control flows from n1 to n2 along (n1, n2, label) only if

µ(n1) evaluates to label. If µ(n1) is an assignment statement, there is a single outgoing

edge from n1, and it is labeled U. Henceforth, we use CFG to refer to a control flow graph,

and use PN to refer to both a program and its CFG, when there is no confusion.
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Figure 3.3: A CFG

A CFG may have cycles due to the

presence of loops in the program. Aback-

edge of a loop in a CFG is an edge from

a node corresponding to the last statement

within the body of a loop to the node rep-

resenting the corresponding loop head. An

exit-edge is an edge from the loop head to a

node outside the loop body. An incoming-

edge is an edge to the loop head from a

node outside the loop body. The program

grammar shown in Fig. 3.1 (as well as in

Fig. 3.2) ensures that every loop has ex-

actly one back-edge, one incoming-edge and

one exit-edge.

Removing all back-edges from a CFG

renders it acyclic. The target nodes of

back-edges, i.e. nodes corresponding to

loop heads, are called cut-points of the

CFG. Every acyclic sub-graph of a CFG

that starts from a cut-point or Start and

ends at another cut-point or End, and that does not pass through any other cut-points in

between and also does not include any back-edge, is called a segment. In the literature, a

segment may also be referred to as a region.

Example 3.1 Consider the CFG shown in Fig. 3.3. For clarity, edges labeled U are

shown unlabeled in the figure. The back-edges are 7→ 2 (labeled e1) and 8→ 1 (labeled

e2). The incoming-edges in the CFG are S → 1 and 1→ 2, and the exit-edges are 2→ 8

and 1→ E.

The cut-points in the CFG are nodes 1 and 2. And the segments induced by these

cut-points are S → 1, 1 → 2, 2 → 3 → {4, 6} → 5 → 7, 2 → 8 and 1 → E. Note that

every segment is an acyclic sub-graph of the CFG with a unique source node and a unique

sink node. �

For every node n in the CFG of the program, we use def (n) and uses(n) to refer
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to the set of scalar variables and arrays (excluding the loop counter variables) that are

defined and used, respectively, in the statement or Boolean expression at n. We include

the symbolic parameter N in the set uses(n) if the statement at node n makes use of

N . Since the parameter N cannot be re-defined by any program generated according to

the grammar in Fig. 3.1 (or in Fig. 3.2), it never appears in def (n) for any node n. If A

represents an array in def (n), we use defIndex (A, n) to refer to the index expression of

the element of A updated at n. Similarly, if A ∈ uses(n), we use useIndex (A, n) to refer

to the set of index expression(s) of element(s) of A read at n.

A node n in a control flow graph strictly post-dominates a node m if all control flow

paths from node m pass through n before reaching the exit node and m is not the same

as n. The immediate post-dominator of node n is a node that strictly post-dominates n

but does not strictly post-dominate any other node that strictly post-dominates n.

3.3 Modeling and Proving Verification Conditions

In this section, we present the basics of first-order logic and satisfiability modulo theories

(SMT) that are necessary for underling parts of this work. The verification conditions

generated by our technique are compiled into logical formulae in first-order logic. First-

order logic extends propositional logic with quantifiers and the non-logical symbols. The

first-order logic comprises of a set of variables, a set of logical symbols (e.g. ∧, ¬, ∀), a

set of non-logical symbols (consisting of functions F , predicates P and constants C) and

the rules for constructing well-formed formulae. A free variable is one that is not bound

by a quantifier. We refer to the set of non-logical symbols as a signature Σ.

The variables in logic take values from a specific domain and axioms specify the

interpretation of the logical and non-logical symbols. A formula in the logic is said to

be satisfiable if and only if it is well-formed and there exists an assignment of a domain

element to each free variable in the formula that makes the formula evaluate to true under

the given interpretation of the symbols.

When we define restrictions on the set of non-logical symbols Σ that are allowed in

a formula and the interpretation that can be given to these non-logical symbols, then the

restricted version of the logic is referred to as a theory. When we restrict the set of logical

symbols or the grammar, the restricted version of the logic is referred to as a fragment.
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The following theories and their combination are of interest to us.

Theory of Equality with Uninterpreted Functions (EUF). The signature of

the theory TEUF contains a special predicate symbol “=”, and countably infinite sets of

uninterpreted sorts and uninterpreted function symbols. The theory consists of equality

axioms, namely reflexivity, transitivity and symmetry/commutativity, that provide the

interpretation to the “=” predicate symbol. The theory also contains the congruence

axiom that imposes functional consistency on the uninterpreted function symbols. TEUF
is decidable [KS16] and the congruence closure algorithm [Sho78] decides conjunctions of

literals in the theory in polynomial time.

Theory of Linear Integer Arithmetic (LIA). The signature of the theory TLIA
contains a integer sort, standard arithmetic function symbols, such as + and − as well

as binary comparison operators (e.g. <). The theory consists of axioms that define the

arithmetic functions and operators. TLIA is decidable [KS16].

Theory of Arrays. The signature of the theory TA contains the sorts for arrays,

indices, and elements, and function symbols to read and write array elements. The theory

consists of axioms that define the function symbols that operate over arrays. Several

fragments of the TA have been proved decidable [Bra07].

Combination Theory. A program usually refers to arrays and variables of different

data types to define various functionalities. Combination of theories is important to model

such programs using SMT formulae. A combination theory T = T1 ∪ T2 is a defined using

the base theories T1 and T2. The signature Σ of a combination theory T is the union of the

signatures Σ1 and Σ2 of the base theories, i.e., Σ = Σ1 ∪ Σ1. And the axioms of T is the

union of the axioms of the T1 and T2. For convenience, we have shown the combination

of only two theories. Multiple (more than two) theories can be combined simultaneously.

A generic method of constructing a decision procedure for a combination theory, under

several requirements from the base theories, has been proposed by Nellson-Oppen [NO79].

Various decidability results have been studied for combination theories and their

fragments. We specifically note that the array property fragment of the combination

theory TA ∪ TLIA, which allows specifying universally quantified properties of arrays with

some restrictions on the array indices, is decidable [Bra07].

A decision problem is to ascertain the satisfiability (dually validity) of a first-order

logic formula with respect to given background theories or a combination thereof. We
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assume the availability of a solver for solving the verification conditions generated by our

technique. Specifically, we use the SMT solver Z3 [MB08] for checking the satisfiability

of these first-order formulae.

3.4 Hoare Triples

A verification problem for an array-manipulating program is a parametric Hoare triple of

the form {ϕ(N)} PN {ψ(N)}. We restrict our attention to problems where the formulas

ϕ(N) and ψ(N) have special forms. Let I be a sequence of array index variables, α be

a quantifier-free formula in the theory of arithmetic over integers TLIA, and β and η be

quantifier-free formulas in the combined theory of arrays and arithmetic over integers TA
∪ TLIA. Then, ϕ(N) and ψ(N) can have one of the following forms:

• Universally quantified formulas of the form ∀I
(
α(I,N) ⇒ β(A,V , I, N)

)
• Existentially quantified formulas of the form ∃I

(
α(I,N) ∧ β(A,V , I, N)

)
• Quantifier-free formulas of the form η(A,V , N)

• Conjunctions and disjunctions of above formulas

Note that all quantification in the above formulas is on array indices and not on arrays

themselves. The formula α(I,N) identifies the relevant indices of the array where the

property β(A,V , I, N) must hold. N is a free variable in ϕ(·) and ψ(·). The above forms

for ϕ(N) and ψ(N) allow us to express a large class of useful pre- and post-conditions,

including sortedness, which can be expressed as ∀i (0 ≤ i < N) ⇒ (A[i] ≤ A[i + 1]). We

use ϕ and ψ instead of ϕ(N) and ψ(N) when the parameterization on N is implicit but

not the main focus. In the examples, we specify the pre- and post-conditions using assume

and assert statements of the form assume(ϕ(N)) and assert(ψ(N)) respectively.
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Chapter 4

Compositional Inductive Verification

by Tiling

In this chapter, we present an induction-based technique to verify programs that access

arrays using complex index expressions. We present an implementation of the technique

in our publicly accessible tool Tiler [Unab] and show its performance vis-a-vis state-

of-the-art tools. A part of the work described in this chapter has been published as a

conference paper in SAS 2017 [CGU17].

4.1 Introduction

Arrays are widely used in programs written in imperative languages. They are typically

used to store large amounts of data in a region of memory that the programmer views

as contiguous, and which she can access randomly by specifying an index (or offset). Se-

quential programs that process data stored in arrays commonly use looping constructs

to iterate over the range of array indices of interest and access the corresponding array

elements. The ease with which data can be accessed by specifying an index is often ex-

ploited by programmers to access or modify array elements at indices that change in com-

plex ways within a loop. While this renders programming easier, it also makes automatic

reasoning about such array-manipulating programs significantly harder. Specifically, the

array-access patterns within loops can vary widely from program to program, and may not

be easy to predict. Furthermore, since the access patterns often span large regions of the

array that depend on program parameters, the array indices of interest cannot be bounded
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by statically estimated small constants. Hence, reasoning about arrays by treating each

array element as a scalar is not a practical option for analyzing such programs. This mo-

tivates us to ask if we can automatically infer program-dependent array-access patterns

within loops, and use these patterns to simplify automatic verification of programs with

loops that manipulate arrays.

A commonly used approach for proving properties of sequential programs with loops

is to construct an inductive argument with an appropriate loop invariant. This involves

three key steps: (i) showing that the invariant holds before entering the loop for the first

time, (ii) establishing that if the invariant holds before entering the loop at any time,

then it continues to hold after one more iteration of the loop, and (iii) proving that the

invariant implies the desired property when the loop terminates. Steps (i) and (ii) allow us

to inductively infer that the invariant holds before every iteration of the loop; the addition

of step (iii) suffices to show that the desired property holds after the loop terminates. A

significant body of research in automated program verification is concerned with finding

invariants that allow the above inductive argument to be applied efficiently for various

classes of programs.

For programs with loops that manipulate arrays, the property of interest at the end

of a loop is often a universally quantified statement over array elements. Examples of

such properties include:

∀i ((0 ≤ i < N)⇒ (A[i] ≥ minV al) ∧ (A[i] ≤ A[i+ 1])), and

∀i ((0 ≤ i < N) ∧ (i mod 2 = 0)⇒ (A[i] = i))

In such cases, a single iteration of the loop typically only ensures that the desired

property holds over a small part of the array. Effectively, each loop iteration incrementally

contributes to the overall property, and the contributions of successive loop iterations

compose to establish the universally quantified property.

4.1.1 Motivating Example

Fig. 4.1 shows a C function snippet adapted from an industrial battery controller. This

example came to our attention after a proprietary industry-strength static analysis tool

failed to prove the quantified assertion at the end of the function. Note that the loop at

line 5 in the function BatteryController updates an array volArray whose size is given

by COUNT. In general, COUNT can be large, viz. 100000. The universally quantified asser-
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1. void BatteryController(int volArray[], int COUNT, int MIN)

2. {

3. int i;

4. if(COUNT % 4 != 0) return;

5. for(i=1; i<=COUNT/4; i++)

6. {

7. if(5 >= MIN) { volArray[i×4-4] = 5; }

8. else { volArray[i×4-4] = 0; }

9. if(7 >= MIN) { volArray[i×4-3] = 7; }

10. else { volArray[i×4-3] = 0; }

11. if(3 >= MIN) { volArray[i×4-2] = 3; }

12. else { volArray[i×4-2] = 0; }

13. if(1 >= MIN) { volArray[i×4-1] = 1; }

14. else { volArray[i×4-1] = 0; }

15. }

16. assert(∀j ∈ [0, COUNT) volArray[j] ≥ MIN ∨ volArray[j] = 0);

17. }

Figure 4.1: A Motivating Example - BatteryController

tion at the end of the “for” loop requires that every element of volArray be either zero or

at least as large as MIN. It is not hard to convince oneself through informal reasoning that

the assertion indeed holds. The difficulty lies in proving it automatically. At the time

the work described in this chapter was done, Booster [AGS14] and Vaphor [MG16]

were the only publicly available tools with automated verification capabilities for proving

universally quantified assertions in programs that manipulate arrays. However, neither

Booster [AGS14] nor Vaphor [MG16] could prove the above assertion within 15 min-

utes on a desktop machine. Bounded model checking tools like CBMC [CKL04] and

SMACK+Corral [LQL12] are able to prove this assertion for arrays with small values
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of COUNT. For large arrays, viz. COUNT = 100000, these tools cannot prove the assertion

within 15 minutes on a desktop machine. This is not surprising since a bounded model

checker must unwind the loop in the function a large number of times if COUNT is large.

4.1.2 Overview of Verification by Tiling

We now give an informal overview of our technique and illustrate how our reasoning

using tiles works on our motivating example. We consider programs PN generated by the

grammar in Fig. 3.1. The programs consist of (possibly nested) loops that manipulate

arrays of parametric size N . We focus on assertions expressed as universally quantified

formulas on arrays, where the quantification is over array indices. The formal syntax

of such assertions is explained in Section 3.4. In our experience, assertions of this form

suffice to express a large class of interesting properties of array-manipulating programs.

We suggest the following approach consisting of three main steps for proving assertions

in array-manipulating programs.

Generating Tiles that Cover the Range of Indices Relevant to the Property

We first identify the region of the array where the contribution of a generic loop iteration

is localized. Informally, we call such a region a tile of the array. Note that depending

on the program, the set of array indices representing a tile may not include all indices

updated in the corresponding loop iteration. In our motivating example, for all array

accesses in the ith loop iteration, the value of the index lies between 4 ∗ i− 4 and 4 ∗ i.

Therefore, we choose [4 ∗ i− 4, 4 ∗ i) as the tile corresponding to the ith iteration of the

loop.

We check that the tiles cover the entire range of array indices of interest. In other

words, we check that (i) every tile contains only valid array indices, and (ii) that no array

index of interest in the quantified assertion is left unaccounted for in the tiles. In our

motivating example, array indices range from 0 to COUNT− 1, while the loop (and hence,

tile) counter i ranges from 1 to COUNT/4. Since the ith tile comprises of four array indices

4i− 4, 4i− 3, 4i− 2 and 4i− 1, both the above requirements are met. In the later parts

of the chapter, we refer to this vital condition as “Covers range”.

Identifying the right tile for a given loop in the program that manipulate arrays can

be challenging in general. We have developed heuristics to automate tile identification
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in a useful class of programs. To understand the generic idea behind our heuristic for

generating the tiles of array-access patterns, suppose the program under consideration

has a single loop, and suppose the quantified property is asserted at the end of the loop.

We introduce a fresh counter variable that is incremented in each loop iteration. We then

use existing arithmetic invariant generation techniques, viz. [GR09, EPG+07], to identify

a relation between the indices of array elements that are accessed and/or updated in a loop

iteration, and the corresponding value of the loop counter. This information is eventually

used to define a tile of the array for the loop under consideration. In our motivating

example, we introduce a fresh auxiliary variable (say j) to denote the index used to

update an element of volArray. Using tools viz.InvGen [GR09], Daikon [EPG+07],

we infer 4 ∗ i− 4 ≤ j < 4 ∗ i, making [4 ∗ i− 4, 4 ∗ i) the tile corresponding to the ith

iteration of the loop. We discuss more about tiling in Section 4.2.

Proving the Slice of a Post-condition Relevant to a Tile

Next, we carve out a “slice” of the quantified property that is relevant to the tile identified

above. Informally, we want this slice to represent the contribution of a generic loop

iteration to the overall property. The inductive step of our approach checks if a generic

iteration of the loop indeed ensures this slice of the property. In the later parts of the

chapter, we refer to this inductive check as “Sliced post-condition holds inductively”.

The sliced property in case of our motivating example says that the elements of

volArray corresponding to indices within a tile have values that are either 0 or at least

MIN. To prove that this holds after an iteration of the loop, we first obtain a loop-free

program containing a single generic iteration of the loop, and check that the elements

of volArray corresponding to the ith tile satisfy the sliced property after the execution

of the ith loop iteration. The transformed program is shown in Fig. 4.2. Note that this

program has a fresh variable j. The assume statements in lines 5–6 say that i is within

the expected range and that j is an index in the ith tile. Since this program is loop-free,

we can use a bounded model checker like CBMC [CKL04] to prove the assertion in the

transformed program.
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1. void BatteryController_Inst(int volArray[], int COUNT, int MIN)

2. {

3. int i = nondetInt(), j = nondetInt();

4. if(COUNT % 4 != 0) return;4.

5. assume(i>=1 && i<=COUNT/4);

6. assume(4×i-4<=j && j<4×i);

7. if(5 >= MIN) { volArray[i×4-4] = 5; }

8. else { volArray[i×4-4] = 0; }

9. if(7 >= MIN) { volArray[i×4-3] = 7; }

10. else { volArray[i×4-3] = 0; }

11. if(3 >= MIN) { volArray[i×4-2] = 3; }

12. else { volArray[i×4-2] = 0; }

13. if(1 >= MIN) { volArray[i×4-1] = 1; }

14. else { volArray[i×4-1] = 0; }

15. assert(volArray[j] ≥ MIN ∨ volArray[j] = 0);

16. }

Figure 4.2: Instrumented Program for Verifying that Sliced Property Holds for the Tile

Checking Non-interference of Tiles Across Loop Iterations

Finally, we check that successive loop iterations do not interfere with each other’s con-

tributions. In other words, once a loop iteration ensures that the slice of the property

corresponding to its tile holds, subsequent loop iterations must not nullify this slice of the

property. In the later parts of the chapter, we refer to this condition as “Non-interference

across tiles”.

To show non-interference, we assume that the sliced property holds for the i′th tile,

where 0 ≤ i′ < i, before the ith loop iteration starts. This is done by including three
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1. void BatteryController_NonInf(int volArray[], int COUNT, int MIN)

2. {

3. int i = nondetInt(), j = nondetInt();

4. int i′ = nondetInt(), j′ = nondetInt();

5. if(COUNT % 4 != 0) return;

6. assume(i>=1 && i<=COUNT/4);

7. assume(4×i-4<=j && j<4×i);

8. assume(1 <= i′ < i);

9. assume(4×i′ - 4 <= j′ < 4×i′);

10. assume(volArray[j′] >= MIN || volArray[j′] == 0);

11. if(5 >= MIN) { volArray[i×4-4] = 5; }

12. else { volArray[i×4-4] = 0; }

13. if(7 >= MIN) { volArray[i×4-3] = 7; }

14. else { volArray[i×4-3] = 0; }

15. if(3 >= MIN) { volArray[i×4-2] = 3; }

16. else { volArray[i×4-2] = 0; }

17. if(1 >= MIN) { volArray[i×4-1] = 1; }

18. else { volArray[i×4-1] = 0; }

19. assert(volArray[j′] ≥ MIN ∨ volArray[j′] = 0);

20. }

Figure 4.3: Instrumented Program for Checking Non-Interference Across Tiles

additional assumptions in lines 8–10 in Fig. 4.3 that were absent while checking the sliced

property. The assume statement on line 8 says that i′ is within the expected range upper

bounded by i. The statement on line 9 says that j′ is an index in the i′th tile. And the

statement on line 10 assumes that the sliced post-condition for the i′th tile holds. We then
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assert at the end of the loop body that the sliced property for the i′th tile continues to hold

even after the ith iteration. This is done by replacing the assertion in line 19 of Fig. 4.2 by

assert (volArray[j′] >= MIN || volArray[j′] == 0), that uses the auxiliary variable

j′ for referring to the i′th tile. Since the program in Fig. 4.3 is loop-free, as before, this

assertion can be easily checked using a bounded model checker like CBMC.

Once all the three checks mentioned above, namely (i) Covers range, (ii) Sliced post-

condition holds inductively and (iii) Non-interference across tiles succeed, we can conclude

that the quantified assertion holds in the original program after the loop terminates. Note

the careful orchestration of inductive reasoning to prove the sliced property, and compo-

sitional reasoning to aggregate the slices of the property to give the original quantified

assertion. The sliced property for a tile allows us to formally capture the contributions of

a generic loop iteration and inductively establish slices of the given quantified property.

Formalizing the covers range and non-interference conditions allows us to show that the

contributions of different loop iterations compose to yield the overall quantified property

at the end of the loop. All three checks succeed for our motivating example. Our tool,

that implements the reasoning described above, proves the assertion in our motivating

example in less than a second.

4.1.3 Handling Nested and Sequence of Loops

In a more general scenario, the program under verification may have a sequence of loops,

and the quantified property may be asserted at the end of the last loop. In such cases,

we introduce a fresh counter variable for each loop, and repeat the above process to

identify a tile corresponding to each loop. For our technique based on tiles to work,

we also need invariants, or mid-conditions, between successive loops in the program.

Since identifying precise invariants is uncomputable in general, we work with candidate

invariants reported by existing off-the-shelf annotation/candidate-invariant generators.

Specifically, in our implementation, we use the dynamic analysis tool Daikon [EPG+07]

that informs us of candidate invariants that are likely (but not proven) to hold between

loops. Our algorithm then checks to see if the candidate invariants reported after every

loop can indeed be proved using our technique. Only those candidates that can be proved

in this way are subsequently used to compose the reasoning across consecutive loops (refer

Section 4.4.1 for an example). Finally, our technique can be applied to programs with
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nested loops as well. While the basic heuristic for identifying tiles remains the same in

this case, the inductive argument needs to be carefully constructed when reasoning about

nested loops. We discuss this in detail later in Sections 4.2.2 and 4.3.

4.1.4 Prototyping and Evaluation

We have implemented the above technique in a tool called Tiler. Our tool takes as input

a C function with one or more loops that manipulate arrays. It also accepts a universally

quantified assertion about arrays at the end of the function. Tiler automatically gener-

ates tiles of array-access patterns for each loop in the C function and tries to prove the

assertion, as described above. We have applied Tiler to a suite of 60 benchmarks com-

prised of programs that manipulate arrays in different ways. For most benchmarks where

the specified assertion holds, Tiler was able to prove the assertion reasonably quickly. In

contrast, two state-of-the-art tools for reasoning about arrays faced difficulties and timed

out on most of these benchmarks. For benchmarks where the specified assertion does not

hold, Tiler relies on bounded model checking to determine if an assertion violation can

be detected within a few unwindings of the loops. There are of course corner cases where

Tiler remains inconclusive about the satisfaction of the assertion. Overall, our initial

experiments suggest that our compositional reasoning can be very effective for proving

assertions in a useful class of array-manipulating programs.

4.1.5 Relation to Optimization Techniques in Compilers

In compilers, the polyhedral analysis (refer Section 2.6) is widely used for parallelizing and

optimizing loops in programs. The analysis is powerful enough to extract affine relations

between program variables. It computes iteration domains and access functions that can

be used to extract tiles for arrays accessed in loops. Further, the analysis may be useful

in inferring affine relations that can be used as mid-conditions between successive loops

in the program. However, several programs require non-linear relations which may be out

of the reach of such techniques. The scalar evolution analysis may also be able to extract

useful relations about programs. Importantly, unlike our technique, these techniques are

not property driven and aim to produce the most precise relations even when they may

not be necessary to prove the given program.

47



Another optimization that is commonly performed by optimizing compilers is loop

tiling [Muc97]. There are several significant differences between our concept of a tile

and the loop tiling optimization [Muc97]. The latter technique transforms array accesses

within the loop body and explicitly partitions loops, possibly by transforming a non-

nested loop into a nested one, with the aim of optimizing the memory/cache performance.

The optimization is known to improve data locality. In several cases, verifying programs

obtained after this transformation may be harder, especially when a non-nested loop is

converted to a nested one to improve caching. Our technique neither transforms array

access expressions in programs nor does it partition loops. We identify regions in an array

pertaining to a loop iteration and use this information to simplify the verification goals.

Consequently, the memory/cache size and its performance do not have any influence on our

method of identifying tiles and their subsequent use. Compiler optimizations can in some

cases simplify verification, specifically if the data dependencies in the optimized program

are easier to reason with using our techniques. We assume that such optimizations are

already applied on the program input to our technique.

The contributions made through this technique are summarized as follows.

• We introduce the novel concept of tiling an array for reasoning about quantified

assertions in programs with loops that manipulate arrays.

• We present a practical algorithm for verifying a class of array-manipulating pro-

grams using the inferred tiles and prove correctness of the presented algorithm. We

demonstrate the algorithm using a running example.

• We describe a prototype tool Tiler that implements our algorithms. The program

transformations in the tool are built using the LLVM compiler framework that

provides the CLANG front-end. The tool uses the Z3 SMT solver for discharging

verification conditions and CBMC for bounded model checking of the transformed

programs.

• We present an experimental evaluation on a large suite of benchmarks that manip-

ulate arrays. From the experimental results, we observe that Tiler performs par-

ticularly well on benchmarks where the quantified assertion holds. On such bench-

mark programs, Tiler outperforms verification tools for array programs such as

Booster, Vaphor, and the abstraction-based model checker SMACK+Corral.
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The remainder of the chapter gives an elaborate description of our technique, details

the implementation of the above ideas to prove quantified assertions in a useful class of

array-manipulating programs in our tool Tiler and presents experimental evaluation.

4.2 A Theory of Tiles

In this section, we present a theory of tiles for proving a class of universally quantified

properties of programs that manipulate arrays within loops.

4.2.1 Tiling in a Simple Setting

Consider a program PN as defined in Section 3.1 that accesses elements of an array A

in a loop L. Suppose PN has a single non-nested loop L with loop counter ` and loop

exit condition (` < E`), where E` is an arithmetic expression involving only constants and

variables not updated in L. Thus, the loop iterates E` times, with the value of ` initialized

to 0 at the beginning of the first iteration, and incremented at the end of each iteration.

Each access of an element of A in the loop is either a read access or a write access. For

example, in the program shown in Fig. 4.4, the loop L (lines 3-12) has three read accesses

of A (at lines 7, 8, 9), and three write accesses of A (at lines 5, 8, 9). In order to check an

assertion about the array at the end of the loop (see, for example, line 13 of Fig. 4.4), we

wish to tile the array based on how its elements are updated in different iterations of the

loop, reason about the effect of each loop iteration on the corresponding tile, and then

compose the tile-wise reasoning to prove/disprove the overall assertion.

Note that the idea of tiling an array based on access patterns in a loop is not new,

and has been used earlier in the context of parallelizing and optimizing compilers [SSK17,

JK11]. However, its use in the context of verification has been limited [CCL11]. To

explore the idea better, we need to formalize the notion of tiles.

Let IndicesA denote the range of indices of the array A. We assume that this is

available to us; in practice, this can be obtained from the declaration of A if it is statically

declared, or from the statement that dynamically allocates the array A. Let ϕ and ψ

denote the pre- and post-conditions, respectively, for the loop L under consideration. For

the ease of exposition, we restrict both ϕ and ψ to be universally quantified formulas

with a single quantifier of the form ∀j (α(j)⇒ β(A,V , j)), where V denotes the set of
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1. void ArrayUpdate(int A[], int N, int THRESH)

2. {

3. for (int l=0; l<N; l=l+1) { // loop L

4. if ((l == 0) || (l == N-1)) {

5. A[l] = THRESH;

6. } else {

7. if (A[l] < THRESH) {

8. A[l+1] = A[l] + 1;

9. A[l] = A[l-1];

10. } // end if

11. } // end else

12. } // end for

13. assert(∀i∈[0,N) A[i] ≥ THRESH);

14. }

Figure 4.4: A Program with Interesting Tiling

scalar variables in the program. To keep the discussion simple, we consider ψ to be of

this specific form for the time being, while ignoring the form of ϕ. Later, in Section 4.2.2,

we relax these restrictions and show how the specific form of ϕ can be used to simplify

the analysis further. For purposes of simplicity, we also assume that the array A is one-

dimensional; our ideas generalize easily to multi-dimensional arrays, as shown later. Let

Inv be a loop invariant for loop L. Clearly, if ϕ⇒ Inv and Inv∧¬(` < EL)⇒ ψ, then we are

already done, and tile-wise reasoning is not necessary. The situation becomes interesting

when Inv is not strong enough to ensure that Inv ∧¬(` < EL)⇒ ψ. We encounter several

such cases in our benchmark suite, and it is here that our technique adds value to the

existing verification flows.

A tiling of A with respect to L, Inv and ψ is a binary predicate TileL,Inv,ψ : N ×

IndicesA → {tt,ff} such that conditions T1 through T3 listed below hold. Note that

these conditions were discussed informally in Section 4.1.2 in the context of our motivating

example. For ease of notation, we use Tile instead of TileL,Inv,ψ below, when L, Inv and ψ

are clear from the context. We also use “`th tile” to refer to all array indices in the set

{j | (j ∈ IndicesA) ∧ Tile(`, j)}.
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(T1) Covers range: Every array index of interest must be present in some tile, and

every tile contains array indices in IndicesA. Thus, the formula η1 ∧ η2 must be

valid, where η1 ≡ ∀j ((j ∈ IndicesA) ∧α(j)⇒ ∃` ((0 ≤ ` < E`) ∧ Tile(`, j))), and

η2 ≡ ∀` ((0 ≤ ` < E`) ∧ Tile(`, j)⇒ (j ∈ IndicesA)).

(T2) Sliced post-condition holds inductively: We define the sliced post-condition for the

`th tile as ψTile(`,·) , ∀j (Tile(`, j) ∧ α(j) ⇒ β(A,V , j)). Thus, ψTile(`,·) asserts that

β(A,V , j) holds for all relevant j in the `th tile. We now require that if the loop

invariant Inv and the sliced post-condition for the `′th tile for all `′ ∈ {0, . . . , `− 1}

hold prior to executing the `th loop iteration, then the sliced post condition for the

`th tile and Inv must also hold after executing the `th loop iteration.

Formally, if Lbody denotes the body of the loop L, the Hoare triple given by {Inv ∧∧
`′:0≤`′<`ψTile(`′,·)} Lbody {Inv ∧ψTile(`,·)} must be valid for all ` ∈ {0, . . . , E` − 1}.

(T3) Non-interference across tiles: For every pair of iterations `, `′ of the loop L such

that `′ < `, the later iteration (`) must not falsify the sliced post condition ψTile(`′,·)

rendered true by the earlier iteration (`′).

Formally, the Hoare triple {Inv ∧ (0 ≤ `′ < `) ∧ ψTile(`′,·)}Lbody{ψTile(`′,·)} must be

valid for all ` ∈ {0, . . . , E` − 1}.

Note that while tiling depends on L, Inv and ψ in general, the array-access patterns

in a loop often suggests a natural tiling of array indices that suffices to prove multiple

assertions ψ even when Inv by itself may not be strong enough to prove them. We

illustrated this simplification in Section 4.1.2 on our motivating example. The example in

Fig. 4.4 admits the tiling predicate Tile(`, j) ≡ (j = `) based on inspection of array-access

patterns in the loop. Note that in this example, the `th iteration of the loop can update

both A[`] and A[` + 1]. However, as we show later, a simple reasoning reveals that the

right tiling choice here is (j = `), and not (` ≤ j ≤ `+ 1).

Theorem 4.1 Suppose TileL,Inv,ψ : N× IndicesA → {tt,ff} satisfies conditions T1 through

T3. If ϕ ⇒ Inv also holds and the loop L iterates at least once, then the Hoare triple

{ϕ} L {ψ} holds.

Proof. The proof proceeds by induction on the values of the loop counter `. The inductive

claim is that at the end of the `th iteration of the loop, the post-condition
∧
`′:0≤`′≤`ψTile(`′,·)
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holds. The base case is easily seen to be true from condition T2 and from the fact that

ϕ ⇒ Inv. Condition T3 and the fact that ` is incremented at the end of each loop

iteration ensure that once we have proved ψTile(`,·) at the end of the `th iteration, it

cannot be falsified in any subsequent iteration of the loop. Condition T2 now ensures

that the sliced post-condition can be inductively proven for the `th tile. By condition T1,

we also have
∧

0≤`<E` ψTile(`,·) ≡ ψ. Since the loop L iterates with ` increasing from 0 to

E` − 1, it follows that ψ indeed holds if Inv holds before the start of the first iteration.

This is the compositional step in our approach. Putting all the parts together, we obtain

a proof of {ϕ} L {ψ}. �

A few observations about the conditions are worth noting. First, note that there is

an alternation of quantifiers in the check for T1. Fortunately, state-of-the-art SMT solvers

like Z3 [MB08] are powerful enough to check this condition efficiently for tiles expressed

as Boolean combinations of linear inequalities on ` and V , as is the case for the examples

in our benchmark suite. We anticipate that with further advances in reasoning about

quantifiers, the check for condition T1 will not be a performance-limiting step.

The checks for T2 and T3 require proving Hoare triples with post-conditions that

have a conjunct of the form ψTile(`,·). From the definition of a sliced post-condition, we

know that ψTile(`,·) is a universally quantified formula. Additionally, the pre-condition for

T2 has a conjunct of the form
∧
`′:0≤`′<`ψTile(`′,·), which is akin to a universally quantified

formula. Therefore T2 and T3 can be checked using Hoare logic-based reasoning tools

that permit quantified pre- and post-conditions, viz. [HB08, JSP+11]. Unfortunately,

the degree of automation and scalability available with such tools is limited today. To

circumvent this problem, we propose to use stronger Hoare triple checks that logically

imply T2 and T3, but do not have quantified formulas in their pre- and post-conditions.

Since the program, and hence Lbody, is assumed not to have nested loops, state-of-the-art

bounded model checking tools that work with quantifier-free pre- and post-conditions,

viz. CBMC, can be used to check these stronger conditions. Specifically, we propose the

following pragmatic replacements of T2 and T3.

(T2*) Let RdAccL(`) denote the set of array index expressions corresponding to read ac-

cesses of A in the `th iteration of the loop L. For example, in Fig. 4.4, RdAccL(`) =

{`, ` − 1}. Clearly, if Lbody is loop-free, RdAccL(`) is a finite set of expressions.
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Suppose | RdAccL(`) |= k and let e1, . . . ek denote the expressions in RdAccL(`). De-

fine ζ(`) to be the formula
∧
ek∈RdAccL(`)

(
((0 ≤ `k < ` < E`) ∧ Tile(`k, ek) ∧α(ek))⇒

β(A,V , ek)
)
, where `k are fresh variables not used in the program. Informally, ζ(`)

states that if A[ek] is read in the `th iteration of L and if ek belongs to the `k
th

(`k < `) tile, then α(ek)⇒ β(A,V , ek) holds.

We now require the following Hoare triple to be valid, where j is a fresh free variable

not used in the program.

{Inv ∧ (0 ≤ ` < E`) ∧ ζ(`) ∧ Tile(`, j) ∧α(j)} Lbody{Inv ∧ β(A,V , j)}.

(T3*) Let j′ and `′ be fresh free variables that are not used in the program. We require

the following Hoare triple to be valid:

{Inv ∧ (0 ≤ `′ < ` < E`) ∧ Tile(`′, j′) ∧α(j′) ∧ β(A,V , j′)} Lbody {β(A,V , j′)}

Lemma 4.1 The Hoare triple in T2* implies that in T2. Similarly, the Hoare triple in

T3* implies that in T3.

Proof. Follows from the observation that a counterexample for validity of the Hoare triple

in T2 or T3 can be used to construct a counterexample for validity of the triple in T2* or

T3* respectively. Notice that Inv is an inductive invariant, hence, {Inv} Lbody{Inv} holds.

As a result the only way T2 can get violated is if the sliced-post condition ψTile(`,·) gets

violated. A counterexample that violates this post-condition while checking T2 refers to a

specific value of ` and a specific value of j such that Tile(`, j)∧α(j) evaluates to true but

β(A,V , j) evaluates to false. We use these values of ` and j to construct a counterexample

that violates T2*. Similarly, a counterexample that violates T3 refers to specific values

of `′ and j′, which are used to construct a counterexample that violates T3*. �

Observe that T2* and T3* require checking Hoare triples with quantifier-free formu-

las in the pre- and post-conditions. This makes it possible to use assertion checking tools

that work with quantifier-free formulas in pre- and post-conditions. Furthermore, since

Lbody is assumed to be loop-free, these checks can also be discharged using state-of-the-

art bounded model checkers, viz. CBMC. The scalability and high degree of automation

provided by tools like CBMC make conditions T1, T2* and T3* more attractive to use.
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4.2.2 Tiling in a General Setting

The above discussion was restricted to a single uni-dimensional array accessed within a

single non-nested loop in a program PN . We now relax these restrictions and show that

the same technique continues to work with some adaptations.

We consider the case where PN is a sequential composition of possibly nested loops.

To analyze such programs, we identify all segments in the CFG of PN . Let CutPts be the

set of cut-points of the CFG. Recall from Section 3.2 that a segment is a sub-DAG of the

CFG between a source node in CutPts∪{Start} and a sink node in CutPts∪{End}. Thus,

a segment s corresponds to a loop-free fragment of PN . Let `s denote the loop counter

variable corresponding to the innermost loop in which s appears. We assign ∅ to `s if s

lies outside all loops in PN . Let OuterLoopCtrss denote the set of loop counter variables

of all outer loops (excluding the innermost one) that enclose (or nest) s. The syntactic

restrictions of programs described in Section 3.1 ensure that `s and OuterLoopCtrss are

uniquely defined for every segment s.

Suppose we are given invariants at every cut-point in PN , where Invc denotes the in-

variant at cut-point c. We assume the invariants are of the usual form ∀I (α(I)⇒ β(A,V , I)),

where I is a sequence of quantified array index variables, and A and V are sequences of

array and scalar variables respectively. Let As be a sequence of arrays that are updated

in the segment s between cut-points c1 and c2, and for which `s 6= ∅. We define a tiling

predicate Tiles,Invc1 ,Invc2 : N× IndicesAs → {tt,ff}, where IndicesAs =
∏

A′∈As
IndicesA′ plays

a role similar to that of IndicesA in Section 4.2.1 (where a single array A was considered).

The predicate Tiles,Invc1 ,Invc2 relates values of the loop counter `s of the innermost loop

containing s to the index expressions that define the updates of arrays in As in the pro-

gram segment s. The entire analysis done in Section 4.2.1 for a simple loop L can now

be re-played for segment s, with Invc1 playing the role of Inv, Invc2 playing the role of ψ,

V ∪ OuterLoopCtrss playing the role of V , and `s playing the role of `. If the segment s

is not enclosed in any loop, i.e. `s = ∅, we need not define any tiling predicate for this

segment. This obviates the need for conditions T1 and T3, and checking T2 simplifies to

checking the validity of the Hoare triple {Invc1} s {Invc2}. In general, Invc1 and Invc2 may

be universally quantified formulas. In such cases, the technique used to simplify condition

T2 to T2* in Section 4.2.1 can be applied to obtain a stronger condition, say T2**, that

does not involve any tile, and requires checking a Hoare triple with quantifier-free pre-
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and post-conditions. If the condition checks for all segments as described above succeed,

it follows from Theorem 4.1 and Lemma 4.1 that we have a proof of {ϕ} PN {ψ}.

Recall that in Section 4.2.1, we ignored the specific form of the pre-condition ϕ. ϕ

has the same form as that of the post-condition ψ and invariants at cut-points considered

above. Therefore, the above technique works if we treat ϕ as InvStart and ψ as InvEnd.

The extension to multi-dimensional arrays is straightforward. Instead of using one

index variable j for accessing arrays, we now allow a tuple of index variables (j1, j2, . . . , jr)

for accessing arrays. Each such variable ji, 1 ≤ i ≤ r, takes values from its own domain,

say IndicesAi
. The entire discussion about tiles above continues to hold, including the

validity of Theorem 4.1, if we replace every occurrence of an array index variable j by a

sequence of variables j1, j2, . . . , jr and every occurrence of IndicesA by IndicesA1×IndicesA2×

. . .× IndicesAr .

4.3 Algorithms for Verification by Tiling

The discussion in the previous section suggests a three-phase algorithm, presented as

routine TiledVerify in Algorithm 1, for verifying quantified properties of arrays in

programs with sequences of possibly nested loops that manipulate arrays. In the first

phase of the algorithm, we use bounded model checking with small pre-determined loop

unrollings to check for assertion violations. If this fails, we construct the CFG of the

input program PN , topologically sort its cut-points and initialize the sets of candidate

invariants at each cut-point to ∅.

In the second phase, we generate candidate invariants at each cut-point c by con-

sidering every segment s that ends at c. For each such segment s, we identify the

loop counter `[s] corresponding to the innermost loop in which s appears, and the set

of loop counters OuterLoopCtrs[s] corresponding to other loops that contain (or nest)

s. Note that when the program fragment in the segment s executes, the active loop

counter that increments from one execution of s to the next is `[s]. The loop counters

in OuterLoopCtrs[s] can be treated similar to other scalar variables in V when analyzing

segment s. We would like the candidate invariants identified at different cut-points to

be of the form ∀I
(
α(I) ⇒ β(A,V , I)

)
, whenever possible. We assume access to a rou-

tine findHeuristicCandidateInvariants for this purpose. Note that the candidate
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Algorithm 1 TiledVerify(PN : program, ϕ: pre-condition, ψ: post-condition)

1: Let G be the CFG for program PN = (A,V ,L,PB, N), as defined in Section 3.1.

I Check for shallow counterexample and initialization

2: Do bounded model checking with pre-determined small loop unrollings;

3: if counterexample found then

4: return “Post condition violated!”;

5: CutPts := set of cut-points in G;

6: Remove all back-edges from G and topologically sort CutPts; . Let v be the sorted

order

7: for each c in CutPts do

8: CandInv[c] := ∅; . Set of candidate invariants at c

9: CandInv[Start] := ϕ; CandInv[End] := ψ; . Fixed invariants at Start and End

I Candidate invariant generation

10: for each segment s from c1 to c2, where c1, c2 ∈ CutPts∪ {Start,End} and c1 v c2 do

11: if (s lies within a loop) then

12: `[s] := loop counter of innermost nested loop containing s;

13: OuterLoopCtrs[s] := loop counters of all other outer loops containing s;

14: else . s not in any loop

15: `[s] := ∅;

16: OuterLoopCtrs[s] := ∅;

17: ScalarVars[s] := V ∪ OuterLoopCtr[s];

18: CandInv[c2] := CandInv[c2] ∪ findHeuristicCandidateInvariants(s, c2, `[s], ScalarVars[s],A);

I Tiling and verification

19: for each segment s from c1 to c2 do

20: if (s lies within a loop) then

21: CandTile[s] := findHeuristicTile(s, `[s], ScalarVars[s],A); . Candidate tile for s

22: Check conditions T1, T2* and T3* for CandTile[s], presented in Section 4.2.1;

23: if (not timed out) AND (T1 or T3* fail) then

24: Re-calculate CandTile[s] using different heuristics;

25: goto 22;
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26: if (not timed out) AND (T2* or T3* fail) AND (c2 6= End) then

27: Re-calculate CandInv[c2] using different heuristics;

28: goto 22;

29: else . s not in any loop

30: Check condition T2**, as described in Section 4.2.2;

31: if (not timed out) AND (T2** fails) AND (c2 6= End) then

32: Re-calculate CandInv[c2] using different heuristics;

33: goto 30;

34: if timed out then

35: return “Time out! Inconclusive answer!”;

36: return “Post-condition verified!”;

invariants obtained from this routine may not actually hold at c2. In the next phase,

we check using our tile-wise reasoning whether a candidate invariant indeed holds at a

cut-point, and use only those candidates that we are able to prove.

In the third phase, we iterate over every segment s between cut-point c1 and c2

again, and use heuristics to identify tiles. This is done by a routine findHeuristicTile.

The working of our current tile generation heuristic is shown in Algorithm 2. For every

array update A[e] := e′ in segment s, the heuristic traverses the control flow graph of s

backward until it reaches the entry point of s, i.e. c1, to determine the expression e in

terms of values of `[s], V , OuterLoopCtrs[s] and A at c1. Let UpdIndexExprsA[s] denote

the set of such expressions for updates to A within s. We identify an initial tile for

A in s as InitTileA(`[s], j) ≡
∨
e∈UpdIndexExprsA[s](j = e). It may turn out that the same

array index expression appears in two or more initial tiles after this step. For example,

in Fig. 4.4, we obtain InitTileA(`, j) ≡ (` ≤ j ≤ ` + 1), and hence InitTileA(`, ` + 1) ∧

InitTileA(` + 1, ` + 1) is satisfiable. While the conditions T1, T2 and T3 do not forbid

overlapping tiles in general (non-interference is different from non-overlapping tiles), our

current heuristic for generating a tile avoids them by refining the initial tile estimates.

For each expression e in UpdIndexExprsA[s], we check if InitTileA(`[s], e) ∧ InitTileA(`[s] +

k, e) ∧ (0 ≤ `[s] < `[s] + k < E`[s]) is satisfiable. If so, we drop e from the refined

tiling predicate, denoted TileA(`[s], ·) in Algorithm 2. This ensures that an array index

expression e belongs to the tile corresponding to the largest value of the loop counter
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Algorithm 2 findHeuristicTile(s : segment, `: loop counter, ScalarVars: set of

scalars, A: set of arrays)

1: Let c1 be the starting cut-point (or Start node) of s;

2: for each array A updated in s do

3: UpdIndexExprsA[s] := ∅;

4: for each update of the form A[e] := e′ at location c in s do . e and e′ are

arithmetic expressions

5: ê := e in terms of `, ScalarVars, A at c1; . Obtained by backward traversal

from c to c1

6: UpdIndexExprsA[s] := UpdIndexExprsA[s] ∪ {ê};

7: InitTileA(`, j) := Simplify
(∨

e∈UpdIndexExprsA[s](j = e)
)
; . Initial estimate of tile

8: for each e ∈ UpdIndexExprsA[s] do

9: if
(
InitTileA(`, e)∧ InitTileA(`+ k, e)∧ (0 ≤ ` < `+ k < E`)

)
is satisfiable then

10: Remove e from UpdIndexExprsA[s];

11: TileA(`, j) := Simplify
(∨

e∈UpdIndexExprsA[s](j = e)
)
; . Refined tile

12: return
∧

A∈A TileA(`, ·);

`[s] when it is updated. The procedure Simplify invoked in lines 7 and 11 of Algorithm 2

tries to obtain a closed form linear expression (or Boolean combination of a few linear

expressions) for
∨
e∈UpdIndexExprsA[s](j = e), if possible. In the case of Fig. 4.4, this gives the

tile (j = `), which suffices for proving the quantified assertion in this example.

The choice of the generated tile by our heuristic or the choice of candidate invariants

may not always be good enough for the requisite checks (T1, T2*, T2**, T3) to go through.

In such cases, Algorithm 1 allows different heuristics to be used to update the tiles and

invariants. In our current implementation, we do not update the tiles, but update the set

of candidate invariants by discarding candidates that cannot be proven using our tile-wise

reasoning. The tiles and candidate invariants obtained in this manner may not always

suffice to prove the assertion within a pre-defined time limit. In such cases, we time out

and report an inconclusive answer.
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1. void copynswap(int a[], int b[], int S)

2. {

3. int acopy[S], i, tmp;

4. for (i = 0; i < S; i++) { // loop L1

5. acopy[i] = a[i];

6. }

7. for (i = 0; i < S; i++) { // loop L2

8. tmp = a[i];

9. a[i] = b[i];

10. b[i] = tmp;

11. }

12. assert(∀i ∈ [0, S), b[i] = acopy[i]);

13. }

Figure 4.5: Program with an Assertion

4.4 Experimental Evaluation

In this section, we experimentally evaluate the verification efficacy of our tile-wise rea-

soning technique on a set of array-manipulating benchmarks.

4.4.1 Implementation

We have implemented the above technique in a tool called Tiler. The tool is publicly

available at [Unab]. The tool is built on top of the LLVM/CLANG [LA04] compiler

infrastructure. We ensure that input C programs are adapted, if needed, to satisfy the

syntactic restrictions in Section 3.1 from Chapter 3. The current implementation is fully

automated for programs with non-nested loops, and can handle programs with nested

loops semi-automatically.

Generating Candidate Invariants

We use a template-based dynamic analysis tool, called Daikon [EPG+07], for generating

candidate invariants. Daikon supports linear invariant discovery among program vari-

ables and arrays, and reports invariants at the entry and exit points of functions. In order
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to learn candidate quantified invariants, we transform the input program as follows. The

sizes of all arrays in the program are changed to a fixed small constant, and all arrays

and program variables that are live are initialized with random values. We then insert

a dummy function call at each cut-point. Our transformation collects all array indices

that are accessed in various segments of the program and expresses them in terms of the

corresponding loop counter(s). Finally, it passes the values of accessed array elements,

the corresponding array index expressions and the loop counter(s) as arguments to the

dummy call, to enable Daikon to infer candidate invariants among them. The trans-

formed program is executed multiple times to generate traces. Daikon learns candidate

linear invariants over the parameters passed to the dummy calls from these traces. Finally,

we lift the candidate invariants thus identified to quantified invariants in the natural way.

As an example, consider the input program shown in Fig. 4.5. The transformed

program is shown in Fig. 4.6. In the transformed program, arrays a and b are initialized

to random values. The dummy function call in loop L1 has four arguments a[i], b[i],

acopy[i] and i. Based on concrete traces, Daikon initially detects the candidate invariants

(a i = acopy i) and (a i 6= b i) on the parameters of the dummy function. We lift these to

obtain the candidate quantified invariants ∀i.(a[i] = acopy[i]) and ∀i.(a[i] 6= b[i]). In the

subsequent analysis, we detect that ∀i, (a[i] 6= b[i]) cannot be proven. This is therefore

dropped from the candidate invariants (line 24 of Algorithm 1), and we proceed with

∀i, (a[i] = acopy[i]), which suffices to prove the post-condition.

Tile Generation and Checking

Tiles are generated as in Algorithm 2. Condition T1 is checked using Z3 [MB08], which

has good support for quantifiers. We employ CBMC [CKL04] for implementing the

checks T2*, T2** and T3*.

4.4.2 Benchmarks

We evaluated our tool Tiler on 60 benchmarks from the test-suites of Booster [AGS14]

and Vaphor [MG16], as well as on programs from a code base of an industrial battery

controller. The benchmarks from Booster and Vaphor test-suites (Table 4.1) perform

common array operations such as array initialization, reverse order initialization, incre-

menting array contents, finding largest and smallest elements, odd and even elements,
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1. void dummy(int a_i, int b_i, int acopy_i, int i, int S) {}

2. void copynswap_inst()

3. {

4. int S=10, i, tmp;

5. int a[S], b[S], acopy[S];

6. for (i = 0; i < S; i++) { // initialization

7. a[i] = rand();

8. b[i] = rand();

9. }

10. for (i = 0; i < S; i++) { // loop L1

11. acopy[i] = a[i];

12. dummy(a[i], b[i], acopy[i], i, S);

13. }

14. for (i = 0; i < S; i++) { // loop L2

15. tmp = a[i];

16. a[i] = b[i];

17. b[i] = tmp;

18. }

19. }

Figure 4.6: Transformed Program Input to Daikon

array comparison, array copying, swapping arrays, swapping a reversed array, multiple

swaps, and the like. Of the 135 benchmarks in this test suite, 66 benchmarks are mi-

nor variants of the benchmarks we report. For example, there are multiple versions of

programs such as copy, init, copyninit, with different counts of sequentially composed

loops. In such cases, the benchmark variant with the largest count is reported in the table.

Besides these, there are 22 cases containing nested loops which can currently be handled

only semi-automatically by our implementation, and 25 cases with post-conditions in a

form that is different from what our tool accepts. Hence, these results are not reported

here.

Benchmarks were also taken from a code base of an industrial battery controller in a
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high-end automotive (Table 4.2). These benchmarks set a repetitive contiguous bunch of

cells in a battery with different values based on the guard condition that gets satisfied. The

updates to individual cells in the bunch, however, may be performed in a non-sequential

manner in a loop iteration. The size of such a contiguous bunch of cells varies in different

models. The assertion checks if the cell values are consistent with the given specification.

All our benchmarks are within 100 lines of uncommented code. The programs have

a variety of tiles such as 4i− 4 ≤ j < 4i, 2i− 2 ≤ j < 2i, j = size− i− 1, j = i etc., with

the last one being the most common tile, where i denotes the loop counter and j denotes

the array index accessed.

4.4.3 Experimental Setup

The experiments reported here were conducted on an Intel Core i5-3320M processor with

4 cores running at 2.6 GHz, with 4GB of memory running Ubuntu 14.04 LTS. A time-out

of 900 seconds was set for Tiler, SMACK+Corral [HCE+15], Booster [AGS14] and

Vaphor [MG16]. The memory limit was set to 1GB for all the tools. Spacer [KGC14]

was used as the SMT solver for the Horn formulas generated by Vaphor since this has

been reported to perform well with Vaphor. In addition, C programs were manually

converted to mini-Java, as required by Vaphor. Since SMACK+Corral is a bounded

model checker, a meaningful comparison with Tiler can be made only in cases where the

benchmark violates a quantified assertion. In such cases, the verifier option svcomp was

used for Corral. In all other cases, we have shown the symbol of † as the result from

SMACK+Corral to indicate that comparison is not meaningful.

4.4.4 Results

Tables 4.1 and 4.2 show the results obtained by running the tools on the set of bench-

marks. In the table, the first column gives the name of the benchmark, the second

column labeled #Loops indicates the number loops (and sub-loops, if any) in the bench-

mark, from the third column onwards the table shows the results for the tools Tiler,

SMACK+Corral, Booster, and Vaphor respectively. 3 indicates assertion safety,

7 indicates assertion violation, ? indicates unknown result, and ? indicates unsupported

construct. All the times reported in the table are in seconds. TO stands for time-out,
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Benchmark #Loops Tiler SMACK+Corral Booster Vaphor

init2ipc.c 1 3 0.5 † 3 0.01 3 1.0

initnincr.c 2 3 5.8 † 3 0.01 3 0.7

evenodd.c 1 3 0.4 † 3 0.01 3 0.04

revrefill.c 1 3 0.6 † 3 0.01 3 0.79

largest.c 1 3 0.4 † 3 0.01 3 0.02

smallest.c 1 3 0.4 † 3 0.01 3 0.02

cpy.c 1 3 0.6 † 3 0.01 3 2.0

cpynrev.c 2 3 3.8 † 3 3.1 3 5.4

cpynswp.c 2 3 4.2 † 3 12.4 3 1.38

cpynswp2.c 3 3 10.2 † 3 198 3 7.2*

01.c 1 3 0.44 † 3 0.05 3 0.38

02.c 1 3 0.65 † 3 0.02 3 2.3

06.c 2 3 8.15 † 3 0.04 3 0.35

27.c 1 3 0.41 † 3 0.01 3 0.12

43.c 1 3 0.45 † 3 0.03 3 0.05

maxinarr.c 1 3 0.51 † 3 0.01 3 0.11

mininarr.c 1 3 0.53 † 3 0.02 3 0.13

compare.c 1 3 0.44 † 3 0.04 3 0.62

palindrome.c 1 3 0.52 † 3 0.02 3 0.39

copy9.c 9 3 34.6 † 3 0.46 TO

init9.c 9 3 29.2 † 3 0.34 3 0.16

seqinit.c 1 3 0.45 † 3 0.03 3 0.43

nec40t.c 1 3 0.50 † 3 0.06 3 0.48

sumarr.c 1 3 0.55 † 3 0.56 3 4.2

vararg.c 1 3 0.42 † 3 0.03 3 0.12

find.c 1 3 0.52 † 3 0.02 3 0.14

running.c 1 3 0.62 † 3 0.04 3 0.12

revcpy.c 1 3 0.7 † 3 0.01 3 0.73

revcpyswp.c 2 3 6.3 † 3 0.02 TO

revcpyswp2.c 3 3 8.6 † 3 0.03 TO

Table 4.1: Results on Benchmarks from Booster & Vaphor Test-suites.
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Benchmark #Loops Tiler SMACK+Corral Booster Vaphor

copy9u.c 9 7 0.16 7 4.48 7 0.44 7 30.8

init9u.c 9 7 0.15 7 3.77 7 0.32 7 0.14

revcpyswpu.c 2 7 0.18 7 3.11 7 0.01 TO

skippedu.c 1 7 0.81 7 2.94 7 0.02 TO

mclceu.c 1 ? 0.37 7 2.5 ? ?

poly1.c 1 TO † 3 15.7 TO

poly2.c 2 ? 6.44 † ? 19.5 TO

tcpy.c 1 ? 0.65 † TO 3 25.1

skipped.c 1 3 1.24 † TO TO

rew.c 1 3 0.48 † 3 0.01 TO

rewrev.c 1 3 0.39 † TO TO

rewnif.c 1 3 0.49 † 3 0.01 TO

rewnifrev.c 1 3 0.28 † 3 0.01 TO

rewnifrev2.c 1 3 0.47 † 3 0.01 TO

pr2.c 1 3 0.51 † TO TO

pr3.c 1 3 0.70 † TO TO

pr4.c 1 3 0.68 † TO TO

pr5.c 1 3 1.32 † TO TO

pnr2.c 1 3 0.55 † TO TO

pnr3.c 1 3 0.98 † TO TO

pnr4.c 1 3 0.86 † TO TO

pnr5.c 1 3 1.98 † TO TO

mbpr2.c 2 3 6.48 † TO TO

mbpr3.c 3 3 9.24 † TO TO

mbpr4.c 4 3 12.75 † TO TO

mbpr5.c 5 3 18.08 † TO TO

nr2.c 1-1 3 1.48* † TO TO

nr3.c 1-1 3 2.02* † TO TO

nr4.c 1-1 3 2.43* † TO TO

nr5.c 1-1 3 2.90* † TO TO

Table 4.2: Results on Benchmarks from Code of an Industrial Battery Controller.
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indicating that the tool did not terminate with a result within the stipulated time limit.

* indicates that semi-automated experiments were performed and the execution times

shown in the table correspond to the automated part of the experiments.

Tiler takes about two seconds for verifying all single loop programs that satisfy

their assertions. For programs containing multiple loops, 10 random runs of the pro-

gram were used to generate candidate invariants using Daikon. For extracting program

traces, Daikon suggests the tool Kvasir. However, Kvasir has a dependency on the

Linux operating system due to its use of valgrind instrumentation framework. We have

implemented an automatic trace extraction module to generate traces in Daikon’s input

format. Hence, we do not rely on Kvasir for instrumentation and trace generation. The

weak loop invariant Inv, mentioned in Section 4.2, was assumed to be true. Tiler took

a maximum of 35 seconds to output the correct result for each such benchmark. The

execution time of Tiler includes program instrumentation, trace generation, execution

of Daikon on the traces for extracting candidate invariants, translating these to assume

statements for use in CBMC, proving the reported candidate invariants and proving the

final assertion. The execution of Daikon and proving candidate invariants took about

95% of the total execution time.

To demonstrate the application of our technique on programs with nested loops, we

applied it to the last four benchmarks in Table 4.2, each of which has a loop nested inside

another. We used Tiler to automatically generate tiles for these programs. However, for

the purposes of this demonstration, we did not automate the calls to CBMC for the class

of programs with nested loops. Instead, we manually encoded the sliced post-condition

and non-interference queries (see Section 4.2) and ran CBMC.

4.4.5 Analysis

Booster and Vaphor performed well on benchmarks from their respective repositories.

Although Vaphor could analyze the benchmark for reversing an array, as well as one

for copying and swapping arrays, it could not analyze the benchmark for reverse copying

and swapping. Since the arrays are reversed and then swapped, all array indices need to

be tracked in this case, causing Vaphor to fail. Vaphor also could not verify most of

the industrial benchmarks due to two key reasons that are not handled well by Vaphor:

(i) at least two distinguished array cells need to be tracked in these benchmarks, and (ii)
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1. void mclceu(int a[], int N)

2. {

3. for(i=0; i<N; i++) {

4. if(i>>16 > 250) {

5. a[i] = 1;

6. } else {

7. a[i] = 0;

8. }

9. }

10. assert(∀x∈[0,N) a[x] = 0);

11.}

(a)

1. void tcpy(int a[], int tcpy[], int N)

2. {

3. if(N % 2 != 0) { return; }

4. for (i=0; i<N/2; i++) {

5. tcpy[N-i-1] = a[N-i-1];

6. tcpy[i] = a[i];

7. }

8. assert(∀x∈[0,N) a[x] = tcpy[x]);

9. }

(b)

Figure 4.7: (a) mclceu.c and (b) tcpy.c

updates to the arrays are made using non-sequential index values.

Booster could analyze all the examples in which the assertion gets violated, except

for a benchmark containing an unsupported construct (shift operator) indicated by ?. This

is not surprising since finding a violating run is sometimes easier than proving an assertion.

Booster however could not prove several other industrial benchmarks because it could

not accelerate the expressions for indices at which the array was being accessed. Tiler

on the other hand, was able to generate interesting tiles for almost all these benchmarks.

In our experiments, SMACK+Corral successfully generated counter-examples for

all benchmarks in which the assertion was violated. As expected, it was unable to produce

any conclusive results for benchmarks with parametric array sizes where the quantified

assertions were satisfied. Note that we used the latest versions of the tools Booster,

Vaphor and SMACK+Corral available during our experimentation in 2017. Since

then these tools have not been updated.

4.4.6 Limitations

There are several scenarios under which Tiler may fail to produce a conclusive result.

Tiler uses CBMC with small loop unwinding bounds to find violating runs in programs

with shallow counter-examples. Consequently, when there are no short counter-examples
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1. void poly2(int a[], int b[], int N)

2. {

3. for(i=0; i<N; i++) {

4. a[i] = i*i + 2;

5. }

6. for(j=0; j<N; j++) {

7. b[j] = a[j] - 2;

8. }

9. assert(∀x∈[0,N) b[x] = x2);

10.}

(a)

1. void poly(int a[], int N)

2. {

3. for(i=0; i<N; i++) {

4. a[i] = i*i;

5. }

6. assert(∀x∈[0,N) a[x] = x2);

7. }

(b)

Figure 4.8: (a) poly2.c and (b) poly.c

(e.g. in mclceu.c shown in Fig. 4.7(a)), Tiler reports an inconclusive answer. Tiler

is also unable to report conclusively in cases where the tile generation heuristic is unable

to generate the right tile (e.g. in tcpy.c shown in Fig. 4.7(b)), when Daikon generates

weak mid-conditions (e.g. in poly2.c shown in Fig. 4.8(a)) or when CBMC (version 5.1)

takes too long to prove conditions T2* or T3* (e.g. in poly1.c shown in Fig. 4.8(b)).

Our work is motivated by the need to prove quantified assertions in programs from

industrial code bases, where we observed interesting array-access patterns. Our tile gener-

ation heuristic is strongly motivated by these patterns. There is clearly a need to develop

more generic tile generation heuristics for larger classes of programs.

4.5 Comparison with Related Techniques

The Vaphor tool [MG16] uses an abstraction to transform array-manipulating programs

to array-free Horn formulas, parameterized by the number of array cells that are to be

tracked. The technique relies on Horn clause solvers such as Z3 [MB08], Spacer [KGC14]

and Eldarica [RHK13] to check the satisfiability of the generated array-free Horn formu-

las. Vaphor does not automatically infer the number of array cells to be tracked to prove

the assertion. It also fails if the updates to the array happen at non-sequential indices,

as is the case in array reverse and swap, for example. In comparison, Tiler requires no

input on the number of cells to be tracked and is not limited by sequential accesses. The
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experiments in [MG16] show that Horn clause solvers are not always efficient on problems

arising from program verification. To be efficient on a wide range of verification problems,

the solvers need to have a mix of heuristics. Our work brings a novel heuristic in the mix,

which may be adopted in these solvers.

Booster [AGS14] combines acceleration [BIK10, JSS14] and lazy abstraction with

interpolants for arrays [ABG+12a] for proving quantified assertions on arrays for a class

of programs. Interpolation for universally quantified array properties is known to be

hard [JM07, MA15]. Hence, Booster fails for programs where simple interpolants are

not easily computable. Fluid updates [DDA10] uses bracketing constraints, which are

over- and under-approximations of indices, to specify the concrete elements being updated

in an array without explicit partitioning. This approach is not property-directed and their

generalization assumes that a single index expression updates the array.

The analysis proposed in [GRS05, HP08] partitions the array into symbolic slices

and abstracts each slice with a numeric scalar variable. These techniques cannot easily

analyze arrays with overlapping slices, and they do not handle updates to multiple indices

in the array or to non-contiguous array partitions. In comparison, Tiler uses state-of-

the-art SMT solver Z3 [MB08] with quantifier support [BJ15] for checking interference

among tiles and can handle updates to multiple non-contiguous indices.

Abstract interpretation based techniques [LR15, CCL11] propose an abstract domain

which utilizes cell contents to split array cells into groups. In particular, the technique

in [LR15] is useful when array cells with similar properties are non-contiguously present

in the array. All the industrial benchmarks in our test-suite are such that this property

holds. Furthermore, these approaches require the implementation of abstract transformers

for each specialized domain due to the subtleties in the analysis. Implementing these

transformers requires significant effort, making such techniques less appealing in practice.

Template-based techniques [GMT08] have been used to generate expressive invariants.

However, this requires the user to supply the right templates, which may not be easy in

general. In [JKD+16], a technique to scale bounded model-checking by transforming a

program with arrays and possibly unbounded loops to an array-free and loop-free program

is presented. This technique is not compositional, and is precise only for a restricted class

of programs.

Stencil [Dat09] refers to some fixed pattern of updating array elements in loops.
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Computational simulations in fluid dynamics, partial differential equations, Jacobi kernels,

Gauss-Seidel method, image processing, and cellular automata, are commonly modeled

using stencils. The access patterns in these stencil computations often do not satisfy the

conditions required to qualify as a tile. Additional, state-of-the-art methods have focused

on optimizing the computation performance of programs that use patterns and not on

proving the correctness of such programs using automatically inferred patterns which is

our primary goal.

There are some close connections between the notion of tiles as used in this chapter

and similar ideas used in compilers. The loop tiling optimization [Muc97] is performed by

compilers an aim of optimizing the memory/cache performance. This transformation ex-

plicitly partitions the loops, possibly by introducing nested loops, possibly to ensure fewer

cache misses and reduces memory overhead. The loop tiling optimization has also been

used in compilers for translating loops into the SIMD instruction set [JK11, RAL+13].

Our concept of tiles and its computation are different from the loop tiling compiler op-

timization [Muc97]. The aim of our technique is to improve the verification efficiency,

while the latter is aimed at improving memory/cache performance. These goals are not

necessarily aligned, making our technique orthogonal. For instance, verifying programs

obtained by such partitioning of loops may be harder. On the contrary, we do not explic-

itly partition loops but identify regions in an array pertaining to a loop iteration and use

this information to simplify the verification goals. Another noteworthy difference is that

the size of memory/cache and its performance do not have any influence on our method

of identifying tiles and their use during verification.

Another relevant compiler optimization is the loop induction variable analysis, for

instance in the LLVM compiler, that can generate all index expressions for an array that

are accessed in a loop iteration in terms of the loop counters. Note, however, that not all

such expressions may be part of a tile (recall the tiles in Fig. 4.4). Hence, automatically

generating the right tile still remains a challenging problem in general.

4.6 Conclusion

Programs that manipulate arrays are often extremely hard to reason about. The problem

is further exacerbated when the programmer uses diverse array-access patterns in differ-
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ent loops. In this chapter, we provided a theory of tiling that helps us decompose the

reasoning about an array into reasoning about automatically identified tiles in the array,

and then compose the results for each tile back to obtain the overall result. While gener-

ation of tiles is difficult in general, we have shown that simple heuristics are often quite

effective in automatically generating tiles that work well in practice. Surprisingly, these

simple heuristics allow us to analyze programs that several state-of-the-art tools choke on.

Further work is needed to identify better and varied tiles for programs automatically.
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Chapter 5

Verification by Full-Program

Induction

In this chapter, we build from ground up a novel inductive reasoning technique to prove a

sub-class of quantified and quantifier-free properties of programs that manipulate arrays.

A part of the work described in this chapter has been published as a conference paper in

TACAS 2020 [CGU20a] and as a journal paper in STTT [CGU22].

5.1 Introduction

We present a new verification technique, called full-program induction, to add to the arse-

nal of a portfolio of verification techniques. Specifically, we consider array-manipulating

programs generated by the grammar shown in Fig. 3.2. The programs consist of non-

nested loops that manipulate arrays, where the size of each array is a symbolic integer

parameter N (> 0). We allow (a sub-class of) quantified and quantifier-free pre- and post-

conditions that may depend on the symbolic parameter N as described in Section 3.4.

Thus, the problem we wish to solve can be viewed as checking the validity of a parame-

terized Hoare triple {ϕ(N)} PN {ψ(N)} for all values of N (> 0), where the program PN

computes with arrays of size N , and N is a free variable in ϕ(·) and ψ(·).

Like earlier verification approaches [SSS00], our technique also relies on mathemat-

ical induction to reason about programs with loops. However, the way in which the

inductive claim is formulated and proved differs significantly from the previous tech-

niques. Specifically, (i) we induct on the full program (possibly containing multiple
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loops) with parameter N and not on iterations of individual loops in the program, (ii)

we perform non-trivial correct-by-construction transformation of the given program and

the pre-condition, whenever feasible, to simplify the inductive step of reasoning, (iii) we

strengthen the pre- and post-condition simultaneously during the inductive step using the

auxiliary inductive predicates obtained by employing Dijkstra’s weakest pre-condition

computation, (iv) we recursively apply the technique to prove the inductive step and

most importantly (v) we do not require explicit or implicit loop-specific inductive invari-

ants to be provided by the user or generated by a solver (viz. by constrained Horn clause

solvers [KBGM15, GSV18, FPMG19] or recurrence solvers [RL18, HHKR10]). The com-

bination of these factors often reduces reasoning about a program with multiple loops

to reasoning about one with fewer (sometimes even none) and “simpler” loops, thereby

simplifying proof goals. In this chapter, we demonstrate this, focusing on programs with

sequentially composed, but non-nested loops.

5.1.1 Motivating Example

Fig. 5.1 shows an example of one such Hoare triple, where the pre- and post-conditions are

specified using assume and assert statements. This triple effectively verifies the formula
i−1∑
j=0

(
1 +

j−1∑
k=0

6 · (k + 1)

)
= i3 for all i ∈ {0 . . . N − 1}, and for all N > 0. Although

each loop in Fig. 5.1 is simple, their sequential composition makes it difficult even for

state-of-the-art tools like VIAP [RL18], VeriAbs [ACC+20], FreqHorn [FPMG19],

Tiler [CGU17], Vaphor [MG16], or Booster [AGS14] to prove the post-condition

correct. In fact, none of the above tools succeed in automatically proving the quantified

post-condition in Fig. 5.1. In contrast, our technique full-program induction proves the

post-condition in Fig. 5.1 correct within a few seconds.

Full-program induction reduces checking the validity of the Hoare triple in Fig. 5.1

to checking the validity of two “simpler” Hoare triples, represented in Figs. 5.2 and 5.3.

The base case of our inductive reasoning is shown in Fig. 5.2, where every loop in the

program is statically unrolled a fixed number of times after instantiating the program

parameter N to a small constant value (here N = 1). As the induction hypothesis, we

assume that the Hoare triple {ϕ(N − 1)} PN−1 {ψ(N − 1)} holds for values of N > 1.

Note that this assumption does not relate to a specific loop in the program, but to the

entire program PN . For the motivating example, the induction hypothesis states that
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// assume(true)

1. for (int t1=0; t1<N; t1=t1+1) {

2. if (t1==0) { A[t1] = 6; }

3. else { A[t1] = A[t1-1] + 6; }

4. }

5. for (int t2=0; t2<N; t2=t2+1) {

6. if (t2==0) { B[t2] = 1; }

7. else { B[t2] = B[t2-1] + A[t2-1]; }

8. }

9. for (int t3=0; t3<N; t3=t3+1) {

10. if (t3==0) { C[t3] = 0; }

11. else { C[t3] = C[t3-1] + B[t3-1]; }

12.}

// assert(∀i ∈ [0,N) C[i] = i3)

Figure 5.1: Original Hoare Triple

the entire Hoare triple in Fig. 5.1, after substituting N with N − 1, holds. Notice that

the induction hypothesis is on the entire program including all three loops and not on

individual loops. The inductive step of the reasoning shown in Fig. 5.3 proves the post-

condition, by automatically generating the computation to be performed after the program

with parameter N − 1 has executed and strengthening the pre- and post-conditions using

auxiliary predicates. Note that all the program statements in Fig. 5.3 have syntactic

counterparts in Fig. 5.1, but this may not be the case in general (we demonstrate this using

an example in next chapter). We conceptualize the computation in the inductive step

using the notions of difference program and difference pre-condition in the later sections.

Effectively, we reasoned about three sequentially composed loops in Fig. 5.1 together,

without the need for any implicitly or explicitly specified loop invariants. We defer a

discussion of how our technique computes these Hoare triples and how auxiliary predicates
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// assume(true)

1. A[0] = 6;

2. B[0] = 1;

3. C[0] = 0;

// assert((C[0] = 03) and

// (B[0] = 13 - 03) and

// (A[0] = 23 - 2×13 + 03))

Figure 5.2: Base-case Hoare Triple

// assume(

// (N > 1) ∧ (C_Nm1[N-2] = (N-2)3) ∧

// (B_Nm1[N-2] = (N-1)3 - (N-2)3) ∧

// (A_Nm1[N-2] = N3 - 2×(N-1)3 + (N-2)3)

// )

1. A[N-1] = A_Nm1[N-2] + 6;

2. B[N-1] = B_Nm1[N-2] + A_Nm1[N-2];

3. C[N-1] = C_Nm1[N-2] + B_Nm1[N-2];

// assert(

// (C[N-1] = (N-1)3) ∧

// (B[N-1] = N3 - (N-1)3) ∧

// (A[N-1] = (N+1)3 - 2×N3 + (N-1)3)

// )

Figure 5.3: Inductive Step Hoare Triple

are generated to iteratively strengthen the pre- and post-conditions to Section 5.6, where

we present the details of our algorithms.

We mention a few important things here to highlight the simplifications illustrated

by the Hoare triples in Figs. 5.2 and 5.3 that resulted from the application of the full-
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program induction technique on the problem in Fig. 5.1. First, the programs in Figs. 5.2

and 5.3 are loop-free. Second, their pre- and post-conditions are quantifier-free. Third,

the validity of these Hoare triples (Figs. 5.2 and 5.3) can be easily proved, e.g. by bounded

model checking [CBRZ01] with a back-end SMT solver like Z3 [MB08]. Fourth, the value

computed in each iteration of each loop in Fig. 5.1 is data-dependent on previous iterations

of the respective loops as well as on the value computed in previous loops. Even though

none of these loops can be trivially translated to a set of parallel assignments, our method

still succeeds in automating the inductive step of the analysis. Last, we did not require any

specialized constraint solving techniques like recurrence solving, theory of uninterpreted

functions or constrained Horn clause solving to verify these Hoare triples, thus making

our technique orthogonal to these approaches when proving properties of array programs.

5.1.2 Beyond Loop-Invariant based Proofs

Techniques based on synthesis and use of loop invariants are popularly used to reason

about programs with loops. These techniques have been successfully applied to ver-

ify different classes of array-manipulating programs, viz. [GRS05, HP08, LR15, CCL11,

GMT08, SG09, BHMR07, JM07, FPMG19]. If we were to prove the assertion in Fig. 5.1

using such techniques, it would be necessary to use appropriate loop-specific invariants

for each of the three loops in Fig. 5.1. The weakest loop invariants needed to prove the

post-condition in this example are: ∀i ∈ [0, t1) (A[i] = 6i + 6) for the first loop (lines

1-4), ∀j ∈ [0, t2) (B[j] = 3j2 + 3j + 1) ∧ (A[j] = 6j + 6) for the second loop (lines 5-8),

and ∀k ∈ [0, t3) (C[k] = k3) ∧ (B[k] = 3k2 + 3k + 1) for the third loop (lines 9-12).

Notice that these invariants are quantified and have non-linear terms. Unfortunately,

automatically deriving such quantified non-linear inductive invariants for each loop is far

from trivial. Template-based invariant generators, viz. [FL01, EPG+07], are among the

best-performers when generating such complex invariants. However, their abilities are

fundamentally limited by the set of templates from which they choose. We therefore

choose not to depend on inductive loop-invariants at all in our work. Instead, we make

use of inductive pre- and post-conditions – a notion that is related to, yet significantly

different from loop-specific invariants. Specifically, inductive pre- and post-conditions are

computed for the entire program, possibly consisting of multiple loops, instead of for each

loop in the program.
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As is clear from the discussion above, the primary difference between a proof gener-

ated by an invariant synthesis technique and the proof generated by our method is that

we no longer need loop-specific safe inductive invariants. Instead, we generate and verify

the Hoare triples shown in Figs. 5.2 and 5.3 considering the entire program PN in Fig. 5.1.

Automatically generating these Hoare triples in some cases may be more difficult than

automatically generating inductive invariants for each loop and vice versa. However, as

demonstrated by the motivating example, there are several complex programs, where it

may be easier to generate these Hoare triples than compute safe inductive invariants for

individual loops. It is a considerable challenge for verification techniques to be able to

automatically generate these invariants and to the best of our knowledge none of the

current state-of-the-art techniques do so.

The main contributions of the chapter can be summarized as follows:

• We introduce a novel verification technique called full-program induction for reason-

ing about assertions in programs with loops that manipulate arrays of parametric

size. Full-program induction does not need loop-specific invariants in order to prove

assertions, even when the program contains multiple sequentially composed loops.

• We propose the notions of difference program and difference pre-condition that

relates programs and properties with different parameters. These are crucially used

to enable the inductive step of the analysis.

• We describe practical algorithms for performing full-program induction. We present

algorithms for computing difference programs that are used to perform the inductive

step of the analysis. We present simple program transformations that allow present-

ing the computation of difference programs in a palatable manner. We present algo-

rithms for handling a sub-class of quantified as well as quantifier-free pre-conditions

and post-conditions in our inductive verification technique.

• We present rigorous proofs of correctness for the described algorithms. We demon-

strate each algorithm in detail using examples.

The remainder of the chapter is structured as follows. In Section 5.2, we give a for-

mal overview of the full-program induction technique. In Section 5.3, we present various

analysis and transformations that generate necessary information used for computing the
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difference program. Section 5.4 presents the algorithm for computing the difference pro-

gram and Section 5.5 presents the algorithm for computing the difference pre-condition. In

Section 5.6, we present the algorithms for full-program induction, prove their correctness

and demonstrate the algorithms using examples. Finally, Section 5.7 concludes.

5.2 Overview of Full-Program Induction

ϕ(N)

ψ(N)

PN

Figure 5.4: Goal

We now elaborate on the core idea behind the full-

program induction technique. Our goal is to check the

validity of the parameterized Hoare triple {ϕ(N)} PN

{ψ(N)} for all N > 0. A visual representation of this

Hoare triple is shown in Fig. 5.4, where the clouds rep-

resent (possibly quantified) formulas and boxes represent

programs/code fragments.

Intuitively, at a conceptual level, our approach works

like any other inductive reasoning technique. However,

the induction is over the entire program, via the param-

eter N , and not on the individual loops in the program.

We first check the base case, where we verify that the

parameterized Hoare triple holds for some small values of

N , say 0 < N ≤ M . We rely on an important, yet

reasonable, assumption that can be stated as follows: For every value of N (> 0), every

loop in PN can be statically unrolled a number (say f(N)) of times that depends only on

N , to yield a loop-free program P̂N that is semantically equivalent to PN . Note that this

does not imply that reasoning about loops can be translated into loop-free reasoning.

In general, f(N) is a non-constant function, and hence, the number of unrollings of

loops in PN may strongly depend on N . In our experience, loops in a vast majority

of array-manipulating programs (including Fig. 5.1 and all our benchmarks) satisfy the

above assumption. Consequently, the base case of our induction reduces to checking a

Hoare triple for a loop-free program. Checking a Hoare triple for a loop-free program is

easily achieved by compiling the pre-condition, program and post-condition into an SMT

formula, whose (un)satisfiability can be checked with an off-the-shelf SMT solver.
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ϕ(N-1)

ψ(N-1)

PN-1

Figure 5.5: Hypothesis

Next we hypothesize that {ϕ(N − 1)} PN−1

{ψ(N − 1)} holds for some N > M , visually depicted

in Fig. 5.5. A few things are worth mentioning here.

First, the entire Hoare triple is assumed not just the for-

mula in the post-condition. Second, the assumption is

not on a specific loop in the program, but the entire pro-

gram PN . Third, the change in the parameter from N

to N − 1 is uniform across the entire Hoare triple and

not on a specific part thereof. We then try to show that

the induction hypothesis implies {ϕ(N)} PN {ψ(N)}.

While this sounds simple in principle, there are several

technical difficulties en-route. Our contribution lies in

overcoming these difficulties algorithmically for a large

class of programs and assertions, thereby making full-

program induction a viable and competitive technique for

proving properties of array- manipulating programs.

ϕ(N-1)

ψ(N-1)

PN-1

ψ(N)

∂PN

∂ϕ(N)

∂ϕ(N)

Figure 5.6: Transformations

The inductive step is the most complex

one, and is the focus of the rest of the chap-

ter. Recall that the inductive hypothesis as-

serts that {ϕ(N − 1)} PN−1 {ψ(N − 1)} is

valid. To make use of this hypothesis in the

inductive step, we must relate the validity of

{ϕ(N)} PN {ψ(N)} to that of {ϕ(N − 1)}

PN−1 {ψ(N − 1)}. We propose doing this,

whenever possible, via two key notions – that

of “difference” program and “difference” pre-

condition. Given a parameterized program

PN , intuitively the “difference” program ∂PN

is one such that {ϕ(N)} PN {ψ(N)} holds

iff {ϕ(N)} PN−1; ∂PN {ψ(N)} holds, where

“;” denotes sequential composition. Refer to

Fig. 5.6 for a visual representation of the Hoare
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triple after the decomposition of PN into PN−1 and ∂PN . We will use this interpretation

of a “difference” program in the subsequent parts of this chapter.

A simple way of ensuring the correctness of this transformation is by having a dif-

ference program ∂PN such that the sequential composition PN−1; ∂PN is semantically

equivalent to PN . We define the precise notion of semantic equivalence as follows.

Definition 5.1 Programs P and Q are said to be semantically equivalent if forall formulas

ϕ and ψ, whenever { ϕ } P { ψ } holds, then { ϕ } Q { ψ } holds as well.

PN−1

∂PN

PN

∀ pre-condition ϕ

∀ post-condition ψ

{ ϕ } { ϕ }

{ ψ } { ψ }

Figure 5.7: Decomposition of PN and Semantic Equivalence

Decomposition of PN into the program PN−1 and ∂PN while ensuring semantic equiv-

alence is visually depicted in Fig. 5.7. This decomposition ensures that both PN and

PN−1; ∂PN reach the same program state upon termination. In general, semantic equiv-

alence of the decomposition for all possible pre- and post-condition formulas is a strong

condition and is referred here only for an intuitive demonstration of its soundness. If the

given parametric post-condition ψ(N) is not impacted by the entire program state then

the semantic equivalence alluded to above is not required to ensure correctness of our

technique. For the construction of the “difference” program, we only need to ensure that

the Hoare semantics of the given program PN is preserved under the given pre-condition

ϕ(N) and the post-condition ψ(N). Throughout the thesis, whenever we refer to semantic

equivalence, we mean the preservation of Hoare semantics of the program under the given

pre- and post-condition formulas.
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ϕ(N) ϕ(N-1) ∂ϕ(N)⇒
Figure 5.8: Difference Pre-condition

The “difference” pre-condition ∂ϕ(N) is a formula such that the following conditions

hold.

1. ϕ(N) ⇒ (ϕ(N − 1) � ∂ϕ(N)), where the Boolean operator � is ∧ when ϕ(N) is

a universally quantified formula and it is ∨ when ϕ(N) is a existentially quantified

formula. We depict this decomposition of ϕ(N) into ϕ(N − 1) and ∂ϕ(N) in Fig.

5.8.

2. The execution of PN−1 does not affect the truth of ∂ϕ(N). This can be visualized

using Fig. 5.6, where the dashed line indicates the propagation of the difference

pre-condition across PN−1 when it is not affected.

ψ(N-1)

ψ(N)

∂PN

∂ϕ(N)

Figure 5.9: Inductive Step

Computing the “difference” pro-

gram ∂PN and the “difference” pre-

condition ∂ϕ(N) is not easy in general.

In Section 5.6, we discuss ways to over-

come these problems and challenges.

Assuming we have ∂PN and ∂ϕ(N)

with the properties stated above, the

proof obligation {ϕ(N)} PN {ψ(N)}

can now be reduced to proving the

Hoare triples {ϕ(N − 1)} PN−1

{ψ(N − 1)} and {ψ(N − 1) ∧ ∂ϕ(N)}

∂PN {ψ(N)} in the inductive step.

Both these Hoare triples can be easily

visualized from Fig. 5.6. The first Hoare triple follows from the inductive hypothesis (Fig.

5.5), and hence, is available for free. Thus, the inductive step is reduced to proving the

second Hoare triple as shown in the Fig. 5.9.
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ϕ(N-1)

ψ(N-1)

PN-1

ψ(N)

∂PN

∂ϕ(N)

∂ϕ(N)Pre(N-1)

Pre(N)

Figure 5.10: Strengthening Pre- and Post-conditions

Proving the inductive step may require strengthening the pre-condition, say by a for-

mula Pre(N−1), in general. Since we are in the inductive step of mathematical induction,

we formulate the new proof sub-goal in such a case as {(ψ(N −1)∧Pre(N −1))∧∂ϕ(N)}

∂PN {ψ(N) ∧ Pre(N)}. While this is somewhat reminiscent of loop invariants, observe

that Pre(N) is not really a loop-specific invariant. Instead, it is analogous to computing

an invariant for the entire program, possibly containing multiple loops. Specifically, the

above process strengthens both the pre- and post-condition of {ψ(N − 1) ∧ ∂ϕ(N)} ∂PN

{ψ(N)} simultaneously using Pre(N − 1) and Pre(N), respectively. Fig. 5.10 shows the

Hoare triple after the strengthening step. The strengthened post-condition of the result-

ing Hoare triple may, in turn, require a new pre-condition Pre′(N − 1) to be satisfied.

This process of strengthening the pre- and post-conditions of the Hoare triple involving

∂PN can be iterated until a fix-point is reached, i.e. no further pre-conditions are needed

for the parameterized Hoare triple to hold. While the fix-point was quickly reached for

all benchmarks we experimented with, we also discuss how to handle cases where the

above process may not converge easily. Note that since we effectively strengthen the pre-
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condition of the Hoare triple in the inductive step, for the overall induction to go through,

it is also necessary to check that the strengthened assertions hold at the end of each base

case check. Automatically computing Pre(N) to strengthen the pre- and post-conditions

of the Hoare triple may not always be straightforward, especially when the difference

program ∂PN has loops. In such cases, we recursively apply our technique on the Hoare

triple {ψ(N − 1)∧ ∂ϕ(N)} ∂PN {ψ(N)} generated during the inductive step. This helps

our technique converge when the generated difference program has one or more loops.

We check if the recursive invocation of our technique will yield beneficial results using a

progress measure influenced by several characteristics of the difference program.

The technique outlined above is called full-program induction, and the following

theorem is the basis for the soundness of full-program induction.

Theorem 5.1 Given {ϕ(N)} PN {ψ(N)}, suppose the following are true:

1. For N > 1, {ϕ(N)} PN−1; ∂PN {ψ(N)} holds iff {ϕ(N)} PN {ψ(N)} holds.

2. For N > 1, there exists a formula ∂ϕ(N) such that

(a) ∂ϕ(N) does not refer to any program variable or array element modified in

PN−1, and

(b) ϕ(N) ⇒ ϕ(N − 1) ∧ ∂ϕ(N).

3. There exists an integer M ≥ 1 and a parameterized formula Pre(M) such that

(a) {ϕ(N)} PN {ψ(N)} holds for 0 < N ≤M ,

(b) {ϕ(M)} PM {ψ(M) ∧ Pre(M)} holds, and

(c) {ψ(N − 1) ∧ Pre(N − 1) ∧ ∂ϕ(N)} ∂PN {ψ(N) ∧ Pre(N)} holds for N > M .

Then {ϕN} PN {ψN} holds for all N ≥ 1.

Proof. For 0 < N ≤M , condition 3(a) (the base case) ensures that {ϕ(N)} PN {ψ(N)}

holds. For N > M , note that by virtue of conditions 1 and 2(b), {ϕ(N)} PN {ψ(N)}

holds if {ϕ(N−1)∧∂ϕ(N)} PN−1; ∂PN {ψ(N)∧Pre(N)} holds. With ψ(N−1)∧Pre(N−

1) as a mid-condition, and by virtue of condition 2(a), the latter Hoare triple holds for

N > M if {ϕ(M)} PM {ψ(M) ∧ Pre(M)} holds and {ψ(N − 1) ∧ Pre(N − 1) ∧ ∂ϕ(N)}

∂PN {ψ(N)∧Pre(N)} holds for all N > M . Both these triples are seen to hold by virtue

of conditions 3(b) and (c). �
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// assume(∀i∈[0,N) A[i] = 1)

1. S = 0;

2. for(i=0; i<N; i++) {

3. S = S + A[i];

4. }

5. for(i=0; i<N; i++) {

6. A[i] = A[i] + S;

7. }

8. for(i=0; i<N; i++) {

9. S = S + A[i];

10. }

// assert(S = N × (N+2))

Figure 5.11: Running Example

5.3 Input Programs, Pre-processing and Analysis

While the Hoare triple with the simple program with pre- and post-conditions shown in

Fig. 5.1 motivates the need for our technique, it may not suffice to illustrate more nuanced

features of our technique. We present a Hoare triple that acts as a running example for

illustrating the ideas in this section.

Example 5.1 The program in Fig. 5.11 is generated using the grammar shown in Fig. 3.2.

It updates a scalar variable S and an array variable A. The first loop adds the value of

each element in array A to variable S. The second loop adds the value of S to each element

of A. The last loop aggregates the updated content of A in S. The pre-condition ϕ(N) is a

universally quantified formula on array A stating that each element has the value 1. We

need to establish the post-condition ψ(N), which is a predicate on S and N. Note that the

post-condition has non-linear terms and is quite challenging to prove. We will use the

Hoare triple in Fig. 5.11 as the example of choice to illustrate the important aspects of
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Start

1

2 3 4

5 6 7

8 9 10

End

tt

ff

tt

ff

tt

ff

Figure 5.12: CFG of Fig. 5.11

our verification algorithm. �

Recall from Section 3.2 that we represent a program PN using its control flow graph

(or CFG) GC = (Locs , CE, µ), where Locs denotes the set of control locations (nodes),

CE are the control-flow edges, and µ annotates every node in Locs with an assignment

statement, or a Boolean expression.

Example 5.2 The CFG of the program in Fig. 5.11 is shown in Fig. 5.12. The nodes

are numbered such that they coincide with the line numbers in the program. The graph

has three cycles each corresponding to a loop in the given program. {(1, 2), (2, 5), (5, 8)}

are incoming-edges, {(4, 2), (7, 5), (10, 8)} are back-edges and {(2, 5), (5, 8), (8, E)} are

exit-edges.

Recall that def (n) and uses(n) denote the set of scalars and arrays defined and used

at node n, respectively. At nodes [n =]1, 3, and 9, def (n) = {S}, at node 6, def (n) =

{A}, and at nodes 3, 6, and 9, uses(n) = {S, A}. Since there are no uses of scalars or

arrays at node 1, uses(n) is an empty set. The index of A updated at 6 is defIndex (A,n)

= i, and the set of indices of array A used at nodes 3, 6, and 9 is useIndex (A,n) = {i}.
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The Start node does not strictly post-dominate any other node. Node 1 strictly post-

dominates Start and is its immediate post-dominator. Node 2 strictly post-dominates

nodes 1, 4 and Start. Node 2 is an immediate post-dominator of 1 and 4. Node 8 strictly

post-dominates all nodes except itself and End. Node 8 is an immediate post-dominator

of 5 and 10. End node strictly post-dominates all nodes except itself. Similarly, the

post-domination relations for other nodes can be computed. �

Prior to describing the algorithm for generating the difference program and its adap-

tation in the full-program induction algorithm, we present analyses and transformations

that are a precursor to these algorithms.

Computing the difference program ∂PN is a non-trivial endeavor. Fig. 5.13 presents

a high level overview of the sequence of steps involved in the generation of a difference

program. In the first step, we carefully rename the variables and arrays such that each

loop in the renamed program refers to its own copy of variables/arrays. Note that this

is similar in spirit to SSA renaming, although there are important differences that will

become clear in Section 5.3.1. In the next step, we peel the last (in some cases the last

few) iteration(s) of each loop in the program such that the remaining part of each loop in

the peeled version of PN iterates exactly the same number of times as the corresponding

loop in PN−1. We use the term peel to denote the last (or last few as the case may be)

iteration(s) of a loop that have been removed from the loop. The motivation for this

peeling is that the difference program can often be constructed by moving the peels of

individual loops to the end of the program and stitching them up in appropriate ways, as

will be discussed in detail in Section 5.4 and further generalized in Chapter 6. In order

to ensure that the semantics of the program PN is preserved even after moving the peels

to the end of the program, we need to do a careful analysis of the data dependencies

between between variables and array elements updated/read in statements within loops

and those updated/read in the peeled iterations. This is achieved, in the third step, by

computing a customized data dependence graph, details of which are presented in Section

5.3.3. In general, variables and array elements in the program PN can have data/control

dependencies on the parameter N beyond those attributable to the iteration counts of

loops being possibly determined by N . We call such variables/array elements as “affected”

by N and identify them, in the fourth step, using a special data-flow analysis and the

data dependencies computed above. Details of this analysis are presented in Section
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Figure 5.13: Sequence of Steps for Computing the Difference Program ∂PN .

5.3.4. Finally, in the last step, use the information about data dependencies and affected

variables to compute the difference program ∂PN .

5.3.1 Renaming Variables and Arrays

Recall that our proposed approach requires us to construct a difference program ∂PN

such that {ϕ(N)} PN {ψ(N)} holds iff {ϕ(N)} PN−1; ∂PN {ψ(N)} holds (condition

1 of Theorem 5.1). A natural (though not necessary) way to do this is to construct ∂PN

such that both PN and PN−1; ∂PN modify all relevant scalar variables and arrays in

exactly the same way. Note, however, that PN may update the same scalar variable or

array in multiple sequentially composed loops. Therefore, when PN−1 terminates and ∂PN

starts executing (in PN−1; ∂PN), we may no longer have access to the values of scalar

variables and arrays that resulted after individual loops in PN−1 terminated. In general,

this makes it difficult to construct ∂PN compositionally from the peels of individual loops

while ensuring that PN−1; ∂PN has the same effect as PN on all relevant scalar variables

and arrays. To circumvent this problem, we propose to pre-process PN such that each

loop in PN updates its own “private” copy of scalar variables and arrays. We add glue

code to copy the values of these scalar variables and arrays after one loop ends and before

the next one begins. We also rename the variables/arrays referred in the post-condition

ψ(N) to their versions corresponding to the last loop in the program. As we show later,

this eases the construction of ∂PN , and also helps in inductive strengthening of the pre-

and post-conditions.

It is important to note here that static single assignment (SSA) [RWZ88] is a well-
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known technique for renaming scalar variables such that a variable is updated at most

once in a program. Similarly, array SSA renaming has been studied earlier in the context

of compilers to achieve similar goals [KS98]. Unlike SSA renaming, we do not have the

stringent requirement of a single update in the whole program. For our method to function

successfully, we only require each loop to update its own copy of a scalar/array variable.

We note that these well-studied techniques can be easily adapted for our purposes.

In the following discussion, we often need to refer to scalar variables and arrays in

a uniform way. For notational clarity, we use vA (as opposed to v for a scalar variable

and A for an array) as a combined symbolic name to refer to a scalar variable or array,

depending on the context. Function Rename, presented in Algorithm 3, performs the

renaming task. In this function, we first create a copy of the CFG of program PN . Let

this copy be denoted PrN (line 1). Next, we transform the CFG of PrN by collapsing all

nodes and edges in the body of each loop into a single node identified with the loop-head.

The function CollapseLoopBody does this transformation in line 2. This is done for

ease of presenting the core idea underlying our renaming strategy. The transformation

allows us to view a loop in PN as a single collapsed control flow node in the CFG.

Recall that our grammar disallows nesting of loops. Therefore, after the invocation of

CollapseLoopBody, the resulting CFG is a finite directed acyclic graph (DAG). This

DAG has finitely many paths, and along each such path, there is a total ordering of all

collapsed loops appearing along the path.

Let the start and end nodes of the CFG of PrN be denoted nstart and nend respec-

tively. We begin the renaming transformation with the start node nstart. We rename each

scalar/array vA to vAnstart in µr(nstart) at node nstart on line 3. We call vAnstart the ver-

sion of vA corresponding to nstart; the notation for versions of vA corresponding to other

nodes in the CFG is similar. Since the pre-condition refers to the same variables/arrays

as in the start node, we rename each variable/array vA referred in the pre-condition ϕ(N)

to vAnstart . Let the resulting renamed pre-condition be denoted ϕr(N) (line 4).

We add nstart to the worklist at line 6 and begin the traversal of the collapsed CFG.

The while loop in lines 7–18 performs a breadth-first top-down traversal of the DAG

representing the CFG, starting with nstart. The function processes one node at a time

from the worklist. For node n, we use the sub-routine Succ for obtaining a list of its

successors. The loop in lines 9–18 processes each successor n′ of n at a time. We rename
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Algorithm 3 Rename((Locs ,CE , µ): program PN , ϕ(N): pre-condition, ψ(N): post-

condition)

1: Let PrN denote (Locsr,CE r, µr), where Locsr := Locs , CE r := CE , and µr := µ;

2: PrN := CollapseLoopBody(PrN);

I Locsr,CE r and µr are defined in the natural way in the resulting CFG

of PrN after collapsing loops. For every (collapsed) loop-head node

n, µr(n) gives the entire collapsed loop.

3: Rename each scalar/array vA that appears in PN to vAnstart in µr(nstart);

4: ϕr(N) := ϕ(N) after renaming each scalar/array vA to vAnstart ;

5: GlueNodes := ∅;

6: WorkList := (nstart); . Add the start node to the worklist

7: while WorkList is not empty do

8: Remove a node n from head of WorkList;

9: for each node n′ ∈ Succ(n) do . Succ gives all the successors of a node

10: Rename each scalar/array vA to vAn
′

in µr(n′);

11: nglue := FreshNode(); . Glue node to be inserted

12: Locsr := Locsr ∪ {nglue};

13: c := Label of edge from n to n′ in PrN ;

14: CE r := CE r \ {(n, n′, c)};

15: CE r := CE r ∪ {(n, nglue, c), (nglue, n′,U)};

I With abuse of notation, nglue is labeled by potentially multiple

assignment statements that copy values between versions of

scalar/array variables in line 16 below. Here, vA refers to

scalars/arrays. Loops are introduced if needed (refer page 89) to

copy array elements.

16: µr(nglue) := (vAn
′
= vAn);

17: GlueNodes := GlueNodes ∪ {nglue};

18: WorkList := AppendToList(WorkList, n′);

19: ψr(N) := ψ(N) with each scalar/array vA renamed to vAnend ;

20: PrN := UnCollapseLoopBody(PrN);

21: return 〈PrN , ϕr(N), ψr(N),GlueNodes〉
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each scalar/array vA to vAn
′

at node n′ (line 10). Note that when n′ is a loop-head, this

amounts to renaming all scalars/arrays in the body of the loop as well. Subsequently, we

create a fresh node, which we call a glue node, denoted nglue (line 11). We insert nglue

between the nodes n and n′ in lines 12–15. To ensure the correct flow of data, we add

program statements in µr(nglue) to copy values of all scalars/arrays from their versions

corresponding to n to their respective versions corresponding to n′ (line 16). For every

scalar variable vn, this amounts to introducing a statement vn
′

= vn; at node nglue. For

every array A, we introduce the loop for(i=0; i<f(N); i++) { An′[i] = An[i]; } at

nglue, where f(N) denotes the size of array A in PN . With slight abuse of notation, all

program statements for effecting this copying operation are added to µr(nglue). Line 17

collects all the glue nodes nglue in the set GlueNodes. At line 18, we append the worklist

with the successors n′ of the current node n. Nodes are added to the worklist only after

they are processed by our renaming function. The loop continues until no further nodes

are left to be processed.

To conclude the renaming process, we rename the variables/array referred to in the

post-condition ψ(N) to their versions corresponding to the end node nend, resulting in the

renamed post-condition ψr(N) (line 19). Finally, we re-introduce the nodes and edges in

the loop body of each loop in the program using the function UnCollapseLoopBody in

line 20. The function returns the renamed program, the renamed pre- and post-conditions

and the set of glue nodes at line 21.

The following lemmas state some important properties of function Rename.

Lemma 5.1 Let n be a node in the collapsed CFG of PN (and hence of PrN). In every

execution of PrN in which control flows through n, no scalar variable or array renamed

vAn is updated after the execution exits node n.

Proof. Since the collapsed CFG of PrN is acyclic, once control flow exits node n, it cannot

come back to either n or to any node n′ that has a control flow path to n. The proof

now follows from the observation that renaming ensures that any scalar variable/array

renamed vAn can only be updated in glue nodes immediately leading to node n or in node

n itself. �

For convenience of exposition, we will henceforth refer to the property formalized in

Lemma 5.1 as the “no-overwriting” property of renamed programs. For a node n that
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corresponds to a collapsed loop in the collapsed CFG of PrN , we abuse notation and use

µr(n) to denote the entire loop (including the entire loop-body) corresponding to the

loop-head n in the subsequent discussion.

Lemma 5.2 {ϕ(N)} PN {ψ(N)} holds iff {ϕr(N)} PrN {ψr(N)} holds.

Proof. Consider the CFG of PrN obtained in line 2 of Algorithm 3, i.e. after invocation

of CollapseLoopBody but before any glue node has been added. Since this CFG is a

DAG, there are finitely many, say M , paths from the start node nstart to the end node

nend in this DAG. Let the set of all such paths be Π. For every path π ∈ Π, there is

a finite number, say ν(π), of linearly ordered nodes along π. Let these nodes be called

nstart = nπ,1, nπ,2, . . . , nπ,ν(π) = nend, where nπ,s is the predecessor of nπ,s+1 along π, for

1 ≤ s < ν(π).

Recall that at the end of line 2, we have µr(n) = µ(n) for all CFG nodes n that are not

loop-heads. For a loop-head n, however, the label µr(n) gives the entire collapsed loop,

while µ(n) gives only the conditional statement in the original loop-head. For clarity

of exposition, we abuse notation and use µ(n) for the labels of all nodes n (including

collapsed loop-head nodes) in PrN at the end of line 2, when there is no confusion.

For an execution trace of the program PrN that starts from a state satisfying ϕ(N)

and that corresponds to the path π ∈ Π, let Invπ,s be an invariant that holds after the

statement(s) in µ(nπ,s) has/have been executed, for every s ∈ {1, . . . , ν(π) − 1}. If, for

some i ∈ {1, . . . , ν(π)}, no execution trace of PrN can reach the node nπ,i along π, we

assume that Invπ,i = ff . It now follows that {ϕ(N)} µ(nπ,1); · · · ; µ(nπ,ν(π)) {ψ(N)}

holds for the execution of PrN along π ∈ Π iff the following Hoare triples hold:

• H1: {ϕ(N)} µ(nπ,1) {Invπ,1}

• H2: {Invπ,s−1} µ(nπ,s) {Invπ,s} for all s ∈ {2, . . . , ν(π)− 1}

• H3: {Invπ,ν(π)−1} µ(nπ,ν(π)) {ψ(N)}

Therefore, {ϕ(N)} PrN {ψ(N)} holds iff H1, H2 and H3 hold for all π ∈ Π. However,

PrN obtained at line 2 of Algorithm 3 is really the same as PN , since the only change

between the CFGs of PN and PrN is that loops have been collapsed into their respective

loop-heads in PrN , and the label of the loop-head has been set to the entire loop, including
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the loop-body. It follows therefore that {ϕ(N)} PN {ψ(N)} holds iff H1, H2 and H3 hold

for all π ∈ Π.

Let us now focus on the program PrN obtained after the while loop of lines 7–18

terminates. By virtue of the way glue nodes are inserted in lines 11–16 of Algorithm 3, no

cycles are introduced in the CFG of PrN in any iteration of the while loop. Therefore, the

CFG that started as a DAG in line 2 continues to remain a DAG on termination of the

while loop. Let Π′ denote the set of paths from nstart to nend in the resulting DAG. For

notational convenience, we use gπ,s to denote the glue node inserted between nodes nπ,s

and nπ,s+1 in the original CFG. Clearly, for every path π : (nstart = nπ,1, . . . , nπ,ν(π) = nend)

in Π, there exists a path π′ : (nstart = nπ,1, gπ,1, . . . , gπ,ν(π)−1, nπ,ν(π) = nend) in Π′, and

vice versa. This defines a natural bijection between paths in Π and those in Π′; it follows

that |Π′| = |Π|.

Let Invπ,s ⇑ t denote the invariant Invπ,s referred to earlier, but with all scalars/arrays

renamed to their versions corresponding to nπ,t. The interpretations of ϕ(N) ⇑ t and

ψ(N) ⇑ t are similar, when the path π is implicit from the context. Recall that ϕr(N)

and ψr(N) denote the pre- and post-conditions obtained after renaming the nstart and

nend nodes at lines 4 and 19 respectively. From line 16, we know that µr(gπ,s) copies the

values of all scalars/arrays from their versions for nπ,s to their corresponding versions for

nπ,s+1. Therefore, {Invπ,s ⇑ s} µr(gπ,s) {Invπ,s ⇑ s+ 1} holds for all s ∈ {1, . . . , ν(π)− 1}

and for all π ∈ Π.

It can now be seen that for each path π′ ∈ Π′, if the corresponding path in Π is π, then

{ϕr(N)} µr(nπ′,1); · · · ; µr(nπ′,ν(π′)) {ψr(N)} holds iff {ϕr(N)} µr(nπ,1); µr(gπ,1); · · · ;

µr(gπ,ν(π)−1); µr(nπ,ν(π)) {ψr(N)} holds. This, in turn, holds iff all of the following hold

for the path π:

• H1′: {ϕ(N) ⇑ 1} µr(nπ,1); µr(gπ,1) {Invπ,1 ⇑ 2}

• H2′: {Invπ,s−1 ⇑ s} µr(nπ,s); µr(gπ,s) {Invπ,s ⇑ s+ 1} for all s ∈ {2, . . . , ν(π)− 1}.

• H3′: {Invπ,ν(π)−1 ⇑ ν(π)} µr(nπ,ν(π)) {ψ(N) ⇑ ν(π)}

Noting the correspondence between paths in Π and those in Π′, we conclude that {ϕr(N)}

PrN {ψr(N)} holds iff H1′, H2′ and H3′ hold for all π ∈ Π.

It is easy to see that these Hoare triples can be further decomposed. For example,

H2′ gets decomposed into the Hoare triples {Invπ,s−1 ⇑ s} µr(nπ,s) {Invπ,s ⇑ s} and
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{Invπ,s ⇑ s} µr(gπ,s) {Invπ,s ⇑ s+ 1}. After the decomposition of H2′, the first Hoare triple

follows from H2 and the second Hoare triple is the one on the glue nodes as previously

stated. Since renaming all variables in the pre-condition, post-condition and program

fragment in a Hoare triple does not change the validity of the triple, conditions H1, H2

and H3 holding for all π ∈ Π is equivalent to conditions H1′, H2′ and H3′ holding for all

π ∈ Π. Therefore, {ϕ(N)} PN {ψ(N)} holds iff {ϕr(N)} PrN {ψr(N)} holds. �

While function Rename, as shown in Algorithm 3, gives the core idea behind our

renaming strategy, there are significant optimizations that can be done to reduce the size

and complexity of the renamed program. For example, Rename introduces a separate

version of all scalar/array variables and inserts glue code for copying values between

different versions of these variables, even when these variables are not updated by the

CFG nodes under consideration. In such cases, the redundant versions of scalar/array

variables and the corresponding copy statements in the glue code can be optimized away

while still ensuring correct data flow. We end this subsection with an illustration of the

program transformation achieved by applying the renaming strategy discussed above on

our running example.

Example 5.3 Consider the program shown in Fig. 5.11. This program has multiple

sequentially composed loops that update a scalar S and an array A. The transformed

program after renaming the scalar and array using function Rename is shown in Fig.

5.14(a), where we have used simple names for the renamed versions of S and A (instead

of using the naming convention in Algorithm 3) for ease of readability. Notice that the

algorithm renames S and A in the second loop to S1 and A1 respectively, and renames the

same variables in the third loop to S2 and A2 respectively. The function also adds glue

code (lines 5-7 and 11-13), shown in blue in Fig. 5.14(a), to copy values from one version

of the renamed scalar and array to another version of the same.

An optimized renaming of S and A for this example is shown in Fig. 5.14(b). This

avoids creating new versions of S and A for statements and loops that do not update S

and A respectively. Moreover, values are read directly from the version of S and A that

reaches the access location. This helps in reducing the glue code required for renaming

quite significantly. Specifically, we create a new version A1 for array A. However, instead

of adding glue code that copies the content of array A into A1, we directly update array A1
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// assume(∀i∈[0,N) A[i] = 1)

1. S = 0;

2. for(i=0; i<N; i++) {

3. S = S + A[i];

4. }

// Lines 5-7 are glue code

5. S1 = S;

6. for(i=0; i<N; i++)

7. A1[i] = A[i];

8. for(i=0; i<N; i++) {

9. A1[i] = A1[i] + S1;

10. }

// Lines 11-13 are glue code

11. S2 = S1;

12. for(i=0; i<N; i++)

13. A2[i] = A1[i];

14. for(i=0; i<N; i++) {

15. S2 = S2 + A2[i];

16. }

// assert(S2 = N × (N+2))

(a)

// assume(∀i∈[0,N) A[i] = 1)

1. S = 0;

2. for(i=0; i<N; i++) {

3. S = S + A[i];

4. }

5. for(i=0; i<N; i++) {

6. A1[i] = A[i] + S;

7. }

// Optimized glue code

8. S1 = S;

9. for(i=0; i<N; i++) {

10. S1 = S1 + A1[i];

11. }

// assert(S1 = N × (N+2))

(b)

Figure 5.14: Renaming (a) Unoptimized and (b) Optimized

in the second loop and directly read values from array A. Similarly, we rename the variable

S to S1 in the last loop and add the glue statement S1 = S; before the loop. Note that

we do not create a new version of S for the second loop, since this loop simply reads the

value of S and does not update it. The variable S referred to in the post-condition is

renamed to S1 accordingly. �
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Algorithm 4 PeelAllLoops((Locs ,CE , µ) : program PN)

1: PpN := (Locsp,CE p, µp), where Locsp = Locs , CE p = CE , µp = µ; . PpN is a copy of

PN

2: PeelNodes := ∅;

3: for each loop L ∈ Loops(PpN) do

4: Let kL(N) be the expression for iteration count of L in PpN ;

5: PeelCount := Simplify(kL(N)− kL(N − 1));

6: if PeelCount is non-constant then

7: throw “Failed to peel non-constant number of iterations”;

8: 〈PpN ,Locs ′〉 := PeelSingleLoop(PpN , L, kL(N − 1),PeelCount);

I We assume availability of function PeelSingleLoop, for example,

from a compiler framework like LLVM. It transforms loop L so that last

PeelCount iterations of L are peeled. Updated CFG and newly created

CFG nodes for the peeled iterations are returned.

9: PeelNodes := PeelNodes ∪ Locs ′;

10: return 〈PpN ,PeelNodes〉;

5.3.2 Peeling the Loops

Recall from Section 5.2 that our induction strategy requires us to use PN−1; ∂PN in place

of PN when proving the Hoare triple {ϕ(N)} PN {ψ(N)}. In general, the parameter N

may determine the number of times each loop in PN iterates (see, for example, Fig. 5.11).

Therefore, the count of iterations of a loop in PN−1 may differ from the corresponding

count in PN . Relating PN and PN−1 requires taking into account such differences of loop

iterations. Towards this end, we transform PN by peeling the last few iterations of each

loop as needed, so that corresponding loops in PN−1 and the transformed PN iterate the

same number of times. This is done by function PeelAllLoops shown in Algorithm

4. The algorithm first makes a copy, viz. PpN , of the non-collapsed input CFG PN . Let

Loops(PpN) denote the set of loops of PpN , and let kL(N) and kL(N−1) denote the number

of times loop L iterates in PpN and PN−1 respectively. The difference kL(N)− kL(N − 1),

computed in line 5, gives the extra iteration count of loop L in PpN . If this difference is not

a constant, we currently report a failure of our technique (line 7). For example, consider a
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loop in PN with the counter i initialized to 0 and the loop termination condition “i < N2”.

The corresponding loop in PN−1 has the same initialization but the termination condition

is “i < (N − 1)2”. Thus, kL(N) = N2 and kL(N − 1) = (N − 1)2 and the difference

of these iteration counts is “2 × N + 1”. Our technique is unable to handle such cases

currently. Note that such cases cannot arise if the upper bounds of all loops in PN are

linear functions of N .

The routine PeelSingleLoop transforms loop L of PpN as follows: it replaces the

termination condition (` < kL(N)) of L by (` < kL(N − 1)). It also peels the last

(kL(N) − kL(N − 1)) iterations of L and adds control flow edges such that the peeled

iterations are executed immediately after the loop body is iterated kL(N − 1) times.

Effectively, PeelSingleLoop peels the last (kL(N) − kL(N − 1)) iterations of loop L

in PpN . The transformed CFG is returned as the updated PpN in line 8. In addition,

PeelSingleLoop also returns the set Locs′ of all CFG nodes newly added while peeling

the loop L. We accumulate these newly added nodes for loops in the set PeelNodes in line

9. Henceforth, we call all nodes in PeelNodes as peeled nodes, all other nodes in the CFG

as non-peeled nodes, and the CFG resulting from the invocation of PeelAllLoops as a

peeled program. This function PeelAllLoops returns the peeled program PpN and the

set of peeled nodes PeelNodes in line 10.

We now state several useful properties of peeled programs.

Lemma 5.3 Let n ∈ Locsp be a node in the peel of loop L, and let nh be the loop-head of

loop L. For every n′ ∈ Locsp that is not in the peel, if there is a control flow path in PpN

from n′ to n, the path necessarily passes through nh.

Proof. The proof follows from the observation that the peel of a loop L must necessarily

execute after the loop L has itself executed kL(N − 1) times. Hence, the sole predecessor

of the first node in the peel must be the loop-head node nh. It follows that every control

flow path from n′ to n where n′ is not in the peel must pass through nh. �

Peeling of loops can destroy the no-overwriting property (as mentioned in Lemma 5.1),

since the same variable/array can get updated in a loop L and also in its peel. However,

a weaker variant of the no-overwriting property continues to hold, as described below.

Lemma 5.4 Let n be a node in the collapsed CFG of PN . In every execution of the

renamed and peeled program PpN in which control flows through n, the following hold.
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1. If n is not a collapsed node, the no-overwriting property as in Lemma 5.1 holds for

all scalar variables/arrays vAn.

2. If n is a node representing a collapsed loop L, the scalar variable/array vAn is not

updated at any subsequent node along the execution, except possibly in the peel of L.

Proof. Follows from the same reasoning as used in the proof of Lemma 5.1. �

We will henceforth refer to the property formalized in Lemma 5.4 as the “no-

overwriting” property of the renamed and peeled program PpN .

Lemma 5.5 In the peeled program PpN , each conditional branch node in a peel of a loop

has an immediate post-dominator in the same peel.

Proof. The syntactic restrictions on the input program, imposed by the grammar shown

in Fig. 3.2, do not admit break, continue, goto, exit and return statements. Since a loop

body is also syntactically a complete program, conditional branch nodes in the body of

the loop, if any, always have an immediate post-dominator node within the body of the

same loop. The peel of a loop is obtained by creating a copy of the loop body (using the

function PeelSingleLoop invoked on line 8 of routine PeelAllLoops in Algorithm 4).

Thus, the conditional branch nodes, if any, in the peel have an immediate post-dominator

node within the same peel. �

Finally, the following lemma asserts that peeling does not change the Hoare semantics

of programs.

Lemma 5.6 {ϕN} PN {ψN} holds iff {ϕN} PpN {ψN} holds.

Proof. Follows immediately from the observation that peeling each loop preserves the

semantics of the program. �

Example 5.4 We execute function PeelAllLoops on the renamed version of our run-

ning example, shown in Fig. 5.14(b). The resulting program is shown in Fig. 5.15. The

algorithm first computes the number of iterations to be peeled from a loop in the pro-

gram, given by PeelCount. The upper bound expression of each loop in the program is N .

Hence, the number of iterations to be peeled is N − (N − 1) = 1. In other words, only
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// assume(∀i∈[0,N) A[i] = 1)

1. S = 0;

2. for(i=0; i<N-1; i++) {

3. S = S + A[i];

4. }

5. S = S + A[N-1];

6. for(i=0; i<N-1; i++) {

7. A1[i] = A[i] + S;

8. }

9. A1[N-1] = A[N-1] + S;

10. S1 = S;

11. for(i=0; i<N-1; i++) {

12. S1 = S1 + A1[i];

13. }

14. S1 = S1 + A1[N-1];

// assert(S1 = N × (N+2))

Figure 5.15: Program with Loops Peeled

the last iteration is to be peeled from each loop. The function appends the statements

in the peeled iteration after each loop and updates the upper bound expressions of each

loop in the resulting program, as shown in Fig. 5.15. The algorithm also returns the set

of peeled nodes, i.e. CFG nodes corresponding to the statements at lines 5, 9, and 14. �

5.3.3 Tracking Data Dependencies

As discussed in Section 3.2, the flow of control in a program can be conveniently repre-

sented by a CFG. A CFG, however, does not immediately provide information about data

dependencies between program statements. We use a separate data dependence graph, or
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DDG, to summarize data dependencies between relevant statements in a program. Our

primary purpose in constructing such a DDG is to understand the dependencies of and

from statements that are executed in PN but not in PN−1. These are related to the peeled

statements described in Section 5.3.2, and determine what must eventually go into the

difference program ∂PN , so that PN and PN−1; ∂PN have the same effect on arrays and

scalar variables.

While there are several notions of data dependence used in the literature (see [Tow76,

Kuc78] for details), we use a fairly simple notion that best serves our purpose. We say

that there is a read-after-write data dependence from n1 to n2 if the statement at n2 uses

a data value that is potentially generated by the statement at n1. There is another kind

of data dependence that is peculiar to our approach that also needs special handling.

It may so happen that the glue code inserted between two nodes by Algorithm 3 has a

loop, say L1, that updates an array A that is also subsequently updated in another loop,

say L2 in non-glue code. If the peel of L1 potentially updates an element of A that is

also updated in the non-peeled part of L2, then we have a write-after-write dependence

between a statement in the peel of a (glue) loop and subsequent statement in the non-

peeled part of another (non-glue) loop. We call such a dependence non-peeled-write-after-

peeled-write dependence. Since we intend to move peels to the end of the program to

construct a difference program, this kind of dependence poses a problem. Therefore, we

explicitly identify such non-peeled-write-after-peeled-write dependencies below. Given the

way Algorithm 3 operates, it is easy to see that such a dependence can only arise for

arrays and not for scalars.

Note that in the above case when we have a glue loop followed by a non-glue loop

updating the same array, there may also be write-after-write dependencies between the

non-peeled (resp. peeled) part of the glue loop and the non-peeled (resp. peeled) part of

the non-glue loop. However, such dependencies are preserved if we move peels of all loops

to the end of the program to construct a difference program. Therefore, such write-after-

write dependencies do not pose any problem for our purposes, and hence we do not keep

track of them. Furthermore, due to the way Algorithm 3 operates, it can be seen that

write-after-read dependencies can never arise between nodes of the collapsed CFG.

Formally, a DDG is a directed graph GD = (Locs ,DE , µ), where Locs and µ are

exactly as in the definition of a CFG, and DE ⊆ Locs × Locs represents read-after-write
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and non-peeled-write-after-peeled-write dependencies between statements in the program.

Since our primary interest is in using data dependencies to and from peeled statements for

purposes of constructing difference programs, and since loops have a very specific form in

our programs of interest (the grammar in Fig. 3.2 allows only loop counter to be updated

in a loop-head node), it suffices to restrict our attention to data dependencies between

distinct non-loop-head nodes in the peeled program.

Let n and n′ be two CFG (hence also DDG) nodes. A conservative way of generating

DDG edges is to add the edge (n, n′) to DE if there is a control flow path π : (n =

n1, n2, . . . , nt−1, nt = n′) in the CFG such that one of the following conditions hold.

D1:
(
def (n) ∩ uses(n′)

)
\
⋃t−1
i=2 def (ni) contains a scalar variable v, or

D2: def (n) contains an array A such that

(a) Either of the following conditions hold:

i. A ∈ uses(n′) and there is a common value that the index expression

defIndex (A, n) and some index expression in useIndex (A, n′) can have.

ii. n ∈ PeelNodes and n′ 6∈ PeelNodes and A ∈ def (n′) and there is a common

value that both the index expressions defIndex (A, n) and defIndex (A, n′)

can have.

(b) Some elements of A are potentially not updated along the path π.

Lemma 5.7 For n, n′ ∈ Locs such that n′ is reachable from n in the CFG, if neither

condition D1 nor condition D2 holds, then there is no read-after-write or non-peeled-

write-after-peeled-write dependence from n to n′.

Proof. We prove the lemma by contradiction. Suppose, if possible, neither D1 nor D2

holds and yet there is a read-after-write dependence due to the data value generated at

n being potentially used at n′. There are two cases to consider.

• If the data value pertains to a scalar variable v that is updated at n and accessed

at n′, then there must be a control flow path π from n to n′ along which v is

not updated at any intermediate node. This implies condition D1 is satisfied – a

contradiction!
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• Suppose the data value pertains to an element of array A that is updated at n and

accessed at n′. Let the index expression of the array element updated at n be e,

and let the corresponding index expression of the same element accessed at n′ be e′.

Clearly, both e and e′ can assume the same value (the concrete index of the element

of A under consideration), and there is a control flow path π from n to n′ along

which this specific array element has not been updated. This implies that both the

conditions D2(a)(i) and D2(b) are satisfied, and hence condition D2 is satisfied – a

contradiction!

Suppose, if possible, neither D1 nor D2 holds and yet there is a non-peeled-write-

after-peeled-write dependence from n to n′. Suppose the data value pertains to an element

of array A that is updated at nodes n and n′ where n ∈ PeelNodes and n′ 6∈ PeelNodes. Let

the index expression of the array element updated at n be e, and let the corresponding

index expression of the same element updated at n′ be e′. Clearly, both e and e′ can

assume the same value (the concrete index of the element of A under consideration), and

there is a control flow path π from n to n′ along which this specific array element has not

been updated. This implies that both the conditions D2(a)(ii) and D2(b) are satisfied,

and hence condition D2 is satisfied – a contradiction! �

Condition D2(b) above is not easy to check in general. However, for programs

generated by the grammar in Fig. 3.2, it is possible to detect that condition D2(b) is

violated in special cases. As an example, if there is a loop that updates all elements of array

A in every control flow path from n to n′, then indeed condition D2(b) is violated. For our

purposes, we use this special case as a sufficient condition to detect violation of condition

D2(b), and conservatively assume that the condition is potentially satisfied in all other

cases. Needless to say, a more precise analysis can be done with additional computational

effort to reduce the degree of conservativeness in the above check for condition D2(b).

We defer such an improved analysis to future work. We now look at how condition D2(a)

is checked. Recall from Section 3.1 that the array indices in our programs can only be

expressions in terms of constants, scalar variables, the loop counter variables and the

parameter N . Furthermore, our programs do not have nested loops. Therefore, at most

one loop counter variable can appear in an array index expression. Specifically, if e is

the index expression defIndex (A, n), and if node n is part of a loop L with loop counter
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`, then e depends in general on `, N and a set of scalar constants. Otherwise, i.e. if

node n is not part of a loop, e depends on N and a set of scalar constants. A similar

reasoning applies for array index expression(s) in useIndex (A, n′) as well. Condition

D2(a) is satisfied if the constraint (e = e′) has a model, i.e. is satisfiable, for some index

expression e′ ∈ useIndex (A, n′), subject to the following conditions:

• Loop counters ` and `′ must have values within their respective loop bounds.

• If both n and n′ are part of the same loop, then ` ≤ `′ (update at n cannot happen

in an iteration after access at n′).

• Every scalar variable v that appears in both e and e′ and is updated along some

control flow path from n to n′ is renamed in e′ to a fresh variable (since the values

of v in e and e′ may be different).

Function ComputeDDG, shown in Algorithm 5, constructs the DDG for an input

program PN represented using its CFG (Locs ,CE , µ). We use the notation n
X
 n′ to

denote that there is a control flow path from n to n′ in the CFG that passes through

intermediate nodes in X ⊆ Locs . ComputeDDG proceeds by initializing the set of data

dependence edges DE to ∅, and by checking for every pair of distinct non-loop-head nodes

(n, n′) such that n
Locs
 n′, whether condition D1 or D2 referred to above is satisfied. If

either one of the conditions is satisfied, it adds (n, n′) to DE (lines 38–39).

The set S of scalar variables and arrays that potentially introduce data dependence

from n to n′ is initialized to def (n) ∩ uses(n′) in line 5. If n is a peeled node and n′ is

a non-peeled node, then we append S with def (n) ∩ def (n′) in line 7. Subsequently, the

check for D1 is done in the loop in lines 8–12. In each iteration of this loop, we choose a

scalar variable v from the set S and check whether there exists a control flow path from

n to n′ such that no intermediate node along the path updates v. The latter check is

implemented by first collecting all nodes n′′ (other than n and n′) that does not update v

in the set NDefV (line 9). If there is a control flow path from n to n′ that passes through

intermediate nodes in NDefV , the value of v updated at n can reach the use of v at n′.

In this case, there is a potential data dependence of n′ on n through v and condition D1

is satisfied. We therefore set D1Sat to True (line 11) and abort the search over additional

scalar variables v in S (line 12). Otherwise, there is no dependency of n′ on n through v.
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Algorithm 5 ComputeDDG((Locs ,CE , µ): program PN , PeelNodes: peeled state-

ments)

1: DE := ∅;

2: for each n, n′ ∈ Locs \ LoopHeads s.t. n 6= n′ and n
Locs
 n′ do . n′ reachable from n

in CFG

3: D1Sat := False; . Initializing flags to indicate if condition D1/D2 holds

4: D2Sat := False;

5: S := def (n) ∩ uses(n′); . Set of scalar variables/arrays that potentially in-

troduce data dependence between n and n′

6: if n ∈ PeelNodes ∧ n′ 6∈ PeelNodes then

7: S := S ∪
(
def (n) ∩ def (n′)

)
;

. For non-peeled-write-after-peeled-write dependence

I Check for condition D1

8: for each scalar variable v ∈ S do

9: NDefV := {n′′ | n′′ 6= n, n′′ 6= n′, v 6∈ def (n′′)}; . Nodes other than n, n′ that

do not define v

10: if n
NDefV
 n′ then . Potential data dependence (n, n′) due to variable v

11: D1Sat := True;

12: break;

I Check for condition D2 if D1 is not already satisfied

13: if (not D1Sat) then

14: for each array A ∈ S do

15: φn := True; . Initializing loop bound constraints for n and n′

16: φn′ := True;

17: if n is part of loop L with loop counter ` then

18: φn := (0 ≤ ` < kL);

19: if n′ is part of a loop L′ with loop counter `′ then

20: φn′ := (0 ≤ `′ < kL′);

21: if L′ same as L then

22: φn′ := φn′ ∧ (` ≤ `′); . n and n′ in the same loop

23: e := defIndex (A, n); . Index expression used to update element of A at n
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24: U := useIndex (A, n′);

25: if n ∈ PeelNodes ∧ n′ 6∈ PeelNodes then

26: U := U ∪ {defIndex (A, n′)};

27: for each scalar variable v that appears in both e and some e′ ∈ U do

28: DefV := {n′′ | n′′ 6= n, n′′ 6= n′, v ∈ def (n′′)}; . Nodes other than n, n′

that define v

29: if ∃n′′ ∈ DefV ∧ n n′′ ∧ n′′  n′ then . v modified along a path

from n to n′

30: e′ := e′[v/vfresh ]; . Rename variable v in e′ with fresh variable vfresh

31: if not IsSat
(
φn ∧ φn′ ∧

∨
e′∈U(e = e′)

)
then

32: continue; . D2(a) violated for array A

33: if ∃ loop L′′ with loop-head n′′ s.t. (n, n′ not in L′′) ∧ (n
Locs\{n′′}
6 n′) then

34: if L′′ necessarily updates all elements of A then

35: continue; . Condition D2(b) violated for array A

36: D2Sat := True; . Potential data dependence (n, n′) due to array A

37: break;

38: if
(
D1Sat ∨ D2Sat

)
then

39: DE := DE ∪ {(n, n′)};

40: return (Locs , DE, µ);

If the flag D1Sat is not set to True even after iterating over all scalar variables in S, we

turn to checking if condition D2 can be satisfied. Towards this end, we iterate over all array

names A remaining in S, and formulate a constraint to check if condition D2(a) is satisfied

(lines 15–32). This condition effectively checks if it is possible for the index expression

defIndex (A, n) to have the same value as any index expression e′ ∈ useIndex (A, n′) or if

it is possible for the index expression defIndex (A, n) to have the same value as the index

expression defIndex (A, n′) when n is a peeled node and n′ is a non-peeled node. If not,

the update/read of array A at n and n′, cannot be for the same element, and hence,

there is no data dependence (n, n′) through A. As discussed above, to check if condition

D2(a) is satisfied, we must conjoin loop bound constraints for loop counter variables in
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case n or n′ is present in a loop (lines 15–22), and rename every scalar variable v in

expressions e′ ∈ useIndex (A, n′) that also appears in the index expression defIndex (A, n),

if v is potentially re-defined in a control flow path from n to n′. The renaming of scalar

variables, if needed, is done in lines 23–30. The call to IsSat in line 31 is an invocation of

an SMT solver that tells us whether the constraint fed to it as argument is satisfiable, i.e.

has a model. If not, condition D2(a), and hence D2, is violated. Otherwise, we check in

lines 33 and 34 if there exists a loop L′′ not containing n and n′ that necessarily executes

as control flows from n to n′ (n
Locs\{n′′}
6 n′ checks this), and in which all elements of the

array A are updated. Recall from the grammar in Fig. 3.2 that all loops in our programs

are for loops with a loop counter that increments by 1 in each operation, and cannot be

updated in the body of the loop. For such programs, it is sometimes easy to identify if a

loop L′′ is indeed updating all elements of an array A. If we cannot determine whether

L′′ necessarily updates all elements of A, we conservatively assume that it does not and

the check in line 34 fails. If both the checks in lines 33 and 34 succeed, we conclude that

condition D2(b), and hence D2, has been violated. In all other cases, we conservatively

assume that D2 is satisfied, and set D2Sat to True in line 36. In such cases, we also abort

the search over additional array variables A in S.

Lemma 5.8 Given a program represented as (Locs , CE, µ), let (Locs , DE, µ) be the DDG

computed by ComputeDDG. For every pair of distinct non-loop-head nodes n, n′ ∈ Locs,

if (n, n′) 6∈ DE, there is no read-after-write or non-peeled-write-after-peeled-write data

dependence from n to n′.

Proof. Since function ComputeDDG implements the checks for conditions D1, D2(a)

and D2(b) in a straightforward manner, the proof follows from Lemma 5.7. �

We conclude this subsection with an illustration of DDG edges computed by Com-

puteDDG for our running example.

Example 5.5 Our running example with peeled loops is shown in Fig. 5.15. The CFG

for this program is shown using solid edges in Fig. 5.16. For convenience of exposition,

we have named nodes such that node ni in the CFG of this program corresponds to the

statement at line i of the peeled program, with two special nodes nstart and nend, as usual.

If we execute function ComputeDDG on this CFG, we obtain the data dependence edges
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Figure 5.16: CFG (solid edges) and DDG (dashed edges) of the Peeled Program in Fig. 5.15

shown using dashed edges in Fig. 5.16. For ease of understanding, each DDG edge (n, n′)

is also labeled by a scalar variable/array that is responsible for the data dependence of n′

on n. Thus, DDG edges (n1, n3), (n1, n5), (n3, n5), (n5, n7), (n5, n9) and (n5, n10) represent

data dependence through the scalar variable S and edges (n10, n12), (n10, n14), (n12, n14)

represent data dependence through the scalar variable S1. In all these cases, condition

D1 holds. Similarly, DDG edges (n7, n12), (n9, n14) represent data dependence through the

array A1, since conditions D2(a) and D2(b) hold in these cases. Note that edge (n7, n14)

(resp. (n9, n12)) is not added although A1 ∈ def (n7) ∩ uses(n14) (resp. ∈ def (n9) ∩

uses(n12)) because condition D2(a) fails in this case. To see why D2(a) fails, notice that

φ7 := 0 ≤ i < N − 1 and φ14 := True. The expressions used to define and access array A

are defIndex (A, 7) := i and useIndex (A, 14) := {N−1}. The constraint 0 ≤ i < N−1∧i =

N − 1, computed in line 31 of Algorithm 5, is unsatisfiable. This violates D2(a)(i). Note

that, in this example there are no non-peeled-write-after-peeled-write dependencies. �
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Relation to Existing Techniques in Compilers

Several existing compilers generate program dependence graph, or PDG from a given input

program, and a DDG can be extracted from such a PDG [FOW87]. Standard data-flow

analysis techniques are usually used to identify data dependencies when constructing a

PDG [FOW87, HR92]. One needs to be particularly careful when identifying dependence

between statements updating and accessing array elements, since it is not only the same

array name that must be involved in the update and access, but also the same element

in the array. The problem is further compounded by the fact that array indices can

be arbitrary expressions in general. While vectorizing compilers can compute precise

dependencies with array index expressions using sophisticated dependence tests [KA01],

it is not always the case that these are implemented in general-purpose compilers. A

conservative generation of DDG may contain spurious data dependence edges, which, in

our context, can lead to the construction of a difference program that is more complex

than what is needed.

Another abstraction widely used in compilers for representing data dependencies

is the polyhedral model (refer Section 2.6). The model has three main parts iteration

domains, scheduling functions and access functions that represent each execution instance

of a statement in the program as an integer point in a polyhedron. Since the polyhedral

model can facilitate the extraction and representation of data dependencies, it is possible

to use the dependence polyhedron instead of our DDG. The analysis, however, may at

times be more conservative than required by our techniques. For example, several accesses

to different memory locations may be conservatively treated as may-accesses. We believe

that our way of refining the data dependencies by formulating a satisfiability problem can

be used to strengthen the polyhedral analysis, specifically to refine the access function by

resolving as many may-accesses as possible.

The polyhedral model has also been used to check the validity of program transfor-

mations by ensuring the preservation of the identified data dependencies. The program

transformations performed by our techniques, as a sub-part of our verification strategy,

are much more aggressive than those performed by compilers (refer Sections 5.4, 6.2

and 7.3.1). The correctness proofs for such transformations are, however, similar in spirit.

The programs input to our techniques may not always satisfy the constraints under

which the polyhedral analysis produces fruitful results. Further, the polyhedral model
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is often implemented in certain parallelizing compilers and may not be available in all

general-purpose compilers. This would require the design of tools to be based on a specific

parallelizing compiler.

5.3.4 Identifying “Affected” Variables

Recall that every loop L originally present in PN iterates kL(N − 1) times in PN−1 and

kL(N) times in PN . The iterations missed by PN−1 are represented by the peeled state-

ments computed by function PeelAllLoops. It is natural to expect the difference pro-

gram ∂PN to contain the peeled statements, perhaps with some adaptations, if PN−1; ∂PN

is to have the same effect as PN on all relevant scalar variables and arrays. However,

statements that are present in both PN and PN−1 may also differ in their semantics, and

therefore require “rectification” in ∂PN . For example, statements like x = N; and if(x

> N) in PN become x = N-1; and if(x > N-1) respectively, in PN−1. Clearly, the cor-

responding statements in PN and PN−1 in the above examples have different semantics.

We say that such statements, though present in both PN−1 and PN , are “affected” by

the parameter N , and potentially need to be “rectified” in ∂PN . Our goal in this sub-

section is to identify all relevant scalar variables/arrays that are potentially affected in

this sense, i.e. they are updated by versions of the same statement in PN and PN−1 but

can potentially result in different values being assigned due to the change in the param-

eter N . We use the data dependence information computed in the previous subsection

to identify such variables and arrays, which we also call affected variables/arrays. Once

these variables/arrays are identified, we can proceed to generate the difference program

∂PN for effecting any rectification that may be needed.

Function ComputeAffected, shown in Algorithm 6, computes the set of affected

scalar variables/arrays of a peeled program PpN , represented by its CFG (Locsp, CEp, µp).

Besides the CFG, the function also takes as input the set of CFG nodes corresponding to

peeled statements, denoted PeelNodes. Recall that such a set is obtained when function

PeelAllLoops is invoked. ComputeAffected starts by constructing the data depen-

dence graph using function ComputeDDG (line 1). The set of data dependence edges

thus obtained is represented by DEp. We use AffectedVars to denote the set of affected

variables and arrays of PN , and initialize it to the empty set in line 2. We also maintain

a list of nodes n in WorkList such that the semantics of the program statement in µ(n)
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Algorithm 6 ComputeAffected
(
(Locsp, CEp, µp): peeled program PpN , PeelNodes:

peeled statements
)

1: (Locsp, DEp, µp) := ComputeDDG((Locsp, CEp, µp), PeelNodes);

2: AffectedVars := ∅; . Initialize AffectedVars

I Initialize WorkList with non-peeled nodes of CFG that either use N

directly or have data dependence on peeled nodes.

3: WorkList := {n | n ∈ Locsp \PeelNodes, N ∈ uses(n) or ∃n′. n′ ∈ PeelNodes∧ (n′, n) ∈

DEp};

4: Processed := ∅;

5: while WorkList is not empty do

6: Remove a node n from the head of WorkList;

7: Processed := Processed ∪ {n};

8: if µ(n) is an assignment statement then

9: AffectedVars := AffectedVars ∪ def (n); . def (n) potentially affected by N

10: for all n′ s.t. n′ ∈ Locsp \ PeelNodes, n′ 6∈ Processed and (n, n′) ∈ DEp do

11: WorkList := AppendToList(WorkList, n′);

12: else if µ(n) is a branch condition then

13: for all n′ s.t. n′ ∈ Locsp \ PeelNodes, n′ 6∈ Processed and n
Locsp
 n′ do

14: WorkList := AppendToList(WorkList, n′);

15: else

16: continue; . n is a loop-head; do not do anything for loop-heads

17: return AffectedVars;

is potentially affected (directly or indirectly) by N . This worklist is initialized in line 3

with all non-peeled nodes n that either (i) have N in uses(n), or (ii) are potentially data

dependent on a peeled node, i.e. ∃n′. n′ ∈ PeelNodes and (n′, n) ∈ DEp. The exclusion

of peeled nodes from the worklist is justified by the observation that these statements are

present in PpN but not in PN−1. Therefore, these must necessarily appear (possibly with

modifications) in ∂PN , and no additional analysis is needed to identify these statements

or variables/arrays updated by them. We also keep track of all non-peeled nodes that

have been processed so far in the set Processed, initialized in line 4.

The loop in lines 5–16 iterates over the worklist, processing one node at a time
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to identify affected scalar variables and arrays. We remove the node n at the head of

the worklist and add it to Processed in lines 6–7. If µp(n) is an assignment statement,

we conservatively consider the scalar variable or array updated at n to be potentially

affected (marked in line 9). We also add all as-yet unprocessed nodes n′ that have a data

dependence on n to the worklist in line 11. This accounts for nodes that are potentially

affected because they use a value that is generated at node n. If node n corresponds to

a conditional branch statement, we conservatively consider all non-peeled nodes n′ that

are reachable from n in the CFG of PpN as potentially affected by N . If such a node n′

has not been processed yet, we add it to the worklist in line 14. Finally, if n corresponds

to a loop-head, we skip the identification of affected variables from n (line 16). This

is justified since the special form of loops allowed by the grammar in Fig. 3.2 permits

only loop counter variables to be updated in a loop-head, and loop counter variables are

not relevant for the post-conditions we wish to prove. The overall set of affected scalar

variables/arrays is iteratively computed until there are no nodes left in the worklist to

process. Since the CFG of PpN has only a finite number of nodes, and since no node is

processed more than once (thanks to the book-keeping done using the set Processed), the

loop in lines 5–16 is guaranteed to terminate.

Lemma 5.9 Let PpN be a peeled program fed as input to the function ComputeAf-

fected. Let n be a node in PpN such that some scalar variable/array in uses(n) is

transitively data/control dependent on N or on a peeled node in PpN . Then n is added to

WorkList during the execution of function ComputeAffected.

Proof. A transitive data/control dependence as referred to in the lemma can be rep-

resented by a sequence of nodes ni1 , ni2 , . . . , nik(= n), where either (i) k = 1 and N ∈

uses(n) or (ii) k > 1 and uses(nij) is data/control dependent on nij−1
, for 2 ≤ j ≤ k. By

Lemma 5.8, in case (ii), there is an edge from nij−1 to nij , for 2 ≤ j ≤ k, in the data

dependence graph computed at line 1 of function ComputeAffected. We now prove

the claim by induction on k.

We consider two base cases of the induction. If k = 1, we know that N ∈ uses(n).

Hence, n is added to WorkList in line 3 of the function ComputeAffected. If k = 2, ei-

ther ni1 is a peeled node or N ∈ uses(ni1). In the former case, n = ni2 is added to WorkList

in line 3 of ComputeAffected. Otherwise, ni1 is added to WorkList in line 3 and must
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be removed from WorkList in a later iteration before function ComputeAffected ter-

minates. In the iteration in which ni1 is removed from WorkList, the node n = ni2 is added

to WorkList either due to data dependence (line 11 of ComputeAffected) or control

dependence (line 14 of ComputeAffected) of uses(n) on ni1 .

We next hypothesize that, for every transitive data/control dependence on N or on a

peeled node, represented by the sequence of nodes (ni1 , ni2 , . . . , nij), where 2 ≤ j ≤ k− 1,

the node nij is added to WorkList during the execution of ComputedAffected.

For the inductive step, consider a transitive data/control dependence on N or on a

peeled node, represented by the sequence of nodes (ni1 , ni2 , . . . , nik), where nik = n. This

implies that uses(nik−1
) is also data/control dependence on N or on a peeled node. Now

by the inductive hypothesis, nik−1
must be added to WorkList in some iteration of the

loop in lines 5 – 16 of ComputedAffected. In the iteration in which nik−1
is removed

from WorkList, the node n = nik is added to WorkList either due to data dependence (line

11 of ComputeAffected) or control dependence (line 14 of ComputeAffected) of

uses(nik) on nik−1
. �

In order to study additional properties of function ComputeAffected, we need to

introduce some additional notation. Given a peeled program PpN generated by PeelAl-

lLoops, let P?N denote the program obtained by removing the peels of all loops from PpN .

Clearly, P?N is identical to the un-peeled program PN (fed as input to PeelAllLoops),

but with all instances of N in upper bound expressions of loops replaced by N − 1. The

program P?N is also closely related, but not identical, to PN−1. Indeed, PN−1 has all

occurrences of N (not just those appearing in upper bound expressions of loops) in PN

replaced by N − 1, whereas only upper bound expressions of loops are modified to obtain

P?N . As an example, the loop in Fig. 5.17(a) in the program PN transforms to the loop

in Fig. 5.17(b) in the program P?N and to the loop in Fig. 5.17(c) in the program PN−1.

Since there is a bijection between the nodes in the CFGs of PN and PN−1, and

for(l=0; l<N; l=l+1)

if(x < N)

x = x + N;

(a)

for(l=0; l<N-1; l=l+1)

if(x < N)

x = x + N;

(b)

for(l=0; l<N-1; l=l+1)

if(x < N-1)

x = x + N-1;

(c)

Figure 5.17: A loop in (a) PN , (b) P?N , and (c) PN−1
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similarly between the nodes in the CFGs of PN and P?N , there exists a bijection between

the nodes in the CFGs of PN−1 and P?N as well. It is also easy to see that since programs

generated by the grammar in Fig. 3.2 only allow loop bound expressions that depend on

constants and N , if L and L′ are corresponding loops in PN−1 and P?N respectively, then

both L and L′ iterate exactly the same number, i.e. kL(N − 1), times.

Let n0, n1, n2, . . . , nt denote nodes in the CFG of PN−1, and let n′0, n
′
1, n

′
2, . . . , n

′
t

denote the corresponding nodes (per the bijection) in the CFG of P?N . For notational

convenience, we let n0 and nt be the start and end nodes respectively of the CFG of

PN−1, and similarly for n′0 and n′t. Let σ denote an arbitrary initial state, i.e. valuation

of all scalar variables and arrays, from which we wish to start executing PN−1 and P?N .

Since programs generated by the grammar in Fig. 3.2 are deterministic, there is exactly

one control flow path, say π, in the CFG of PN−1 that corresponds to the execution of

PN−1 starting from σ. A similar argument holds for P?N , and let π′ be the corresponding

path in its CFG. In the following discussion, we use nij to denote the jth node starting

from ni0 in π, where i0 = 0 and 0 ≤ j < |π|. The interpretation of n′ij in the context of

π′ is analogous.

Lemma 5.10 Let π (resp. π′) be the path in the CFG of PN−1 (resp. P?N) that corresponds

to the execution of PN−1 (resp. P?N) starting from the state σ. Let π̂ : (ni0 , ni1 , . . . , nij) be a

prefix of the path π. Suppose, upon termination of ComputeAffected, no conditional

branch node in π̂ is present in Processed. Then, (n′i0 , n
′
i1
, . . . , n′ij) must be a prefix of π′.

Proof. Recall that the CFGs of PN−1 and P?N are identical (including all loop bounds)

except possibly for the usage of N or an expression involving N in some conditional

branches and/or assignment statements. Note that by definition, none of these CFGs

contain any peeled nodes. Since π and π′ start at corresponding nodes n0 and n′0 in the

respective CFGs, every subsequent node nij in π must be matched by the corresponding

node n′ij in π′, until a branch node is encountered along one of the paths and the branch

condition potentially depends on N . To prove the lemma, it therefore suffices to show

that no conditional branch node nik in π̂ has any transitive data/control dependence on

N .

Let nik be a conditional branch node in π̂. By Lemma 5.9, if any scalar variable/array

in uses(nik) is transitively data/control dependent on N , then nik must be added to
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WorkList at some point during the execution of function ComputeAffected. Conse-

quently, nik must also be removed from WorkList (line 6) and added to Processed (line 7)

before ComputeAffected terminates. However, this violates the premise of the claim,

i.e. nik is not present in Processed on termination of ComputeAffected. Therefore,

no scalar variable/array in uses(nik) can be transitively data/control dependent on N .

This completes the proof of the lemma. �

Lemma 5.11 Let PpN be a peeled program fed as input to the function ComputeAf-

fected. Let vA be a scalar variable/array that is absent from AffectedVars when Com-

puteAffected terminates. If PN−1 and P?N are executed starting from the same state

σ, then vA has the same value on termination of both programs.

Proof. We prove the lemma by contradiction. If possible, let σ be a state (i.e, valuation

of variables and arrays) such that vA has different values on termination of PN−1 and P?N ,

when both programs are executed starting from σ. As before, we use π and π′ to denote

the paths in the CFGs of PN−1 and P?N respectively, that correspond to the execution of

the respective programs starting from σ. Note that by definition, none of these CFGs

contain any peeled nodes. We consider the following cases.

• If none of π and π′ updates vA, the value of vA at the end of execution of the two

programs is the same as the value it had in σ. Clearly, the lemma holds in this case.

• Suppose node nij in π updates vA. We define Branch(π, nij) to be the set of all

nodes nik in the prefix of π ending at nij such that nik corresponds to a conditional

branch statement. Similarly, Dep(π, nij) is defined to be the set of all nodes nik in

the same prefix of π such that there is a path through data dependency edges in

DEp from node nik to either nij or to one of the nodes in Branch(π, nij).

If possible, let nik be a node in Branch(π, nij) such that the branch condition in

µp(nik) has a (possibly transitive) data dependence on N . By Lemma 5.9, nik must

be added to WorkList sometime during the execution of ComputeAffected. Since

nij is reachable from nik along π, this further implies that nij must be added to

WorkList, and subsequently vA ∈ def (nij) must be added to AffectedVars during

the execution of ComputeAffected. However, we know that vA is not present

in AffectedVars on termination of ComputeAffected. Therefore, no branch con-

dition in any node nik in Branch(π, nij) can be transitively data dependent on N .
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It follows that no node in Branch(π, nij) can be added to WorkList during the exe-

cution of ComputeAffected. Hence, none of them can be present in Processed

on termination of ComputeAffected. By Lemma 5.10, it now follows that if

(ni0 , ni1 , . . . , nij) is a prefix of π, then (n′i0 , n
′
i1
, . . . , n′ij) must be a prefix of π′.

Since the scalar variable/array vA is updated at nij in π, the statement at n′ij in π′

must also update vA. Therefore, (i) vA is updated at n′ij in π′, and (ii) for every

node nik in Dep(π, nij) ∪ Branch(π, nij), the corresponding node n′ik is present in

Dep(π′, n′ij) ∪ Branch(π′, n′ij).

Finally, we argue that no node in Dep(π, nij) can be transitively data dependent on

N . Indeed, if this was not the case, by Lemma 5.9, nij would be added to WorkList

during the execution of ComputeAffected, and hence vA would be added to

AffectedVars. However, this violates the premise that vA is absent from AffectedVars.

Combining this with the result obtained above, we find that as far as path π is

concerned, no node in Dep(π, nij)∪Branch(π, nij) is transitively data dependent on

N . Since modifications, if any, in statements at corresponding nodes of PN−1 and

P?N only involve replacing N − 1 by N , such modifications preserve the dependence

of every node on N . Therefore, no node in Dep(π′, n′ij)∪Branch(π′, n′ij) transitively

depends on N . This implies that the statements labeling nodes in Dep(π, nij) ∪

Branch(π, nij) in π are identical to the statements labeling the corresponding nodes

in Dep(π′, n′ij) ∪ Branch(π′, n′ij).

Since both PN−1 and P?N start from the same state σ, the values of vA computed by

PN−1 after executing the sequence of statements corresponding to (ni0 , ni1 , . . . , nij)

must therefore be identical to that computed by P?N after executing the sequence of

statements corresponding to (n′i0 , n
′
i1
, . . . , n′ij). This proves the lemma.

• The case when node n′ij in π′ updates vA is analogous to the above case. �

For a variable/array vA that is not identified as affected, vA cannot be in the def set

of a non-peeled node that either (i) has a transitive data dependence on N or on a peeled

node, or (ii) has a control flow path from a branch node that, in turn, has a transitive

data dependence on N or on a peeled node. The following lemma formalizes this property.
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Lemma 5.12 Let PpN be a peeled program fed as input to the function ComputeAf-

fected. Let vA be a scalar variable/array that is absent from AffectedVars after Com-

puteAffected terminates. Then, vA 6∈ def (n) for every non-peeled node n in PpN such

that some scalar variable/array in uses(n) is transitively data/control dependent on N or

on a peeled node in PpN .

Proof. Consider an arbitrary non-peeled node n in PpN such that some scalar vari-

able/array in uses(n) has a transitive data/control dependence on N or on a peeled

node. Then, by Lemma 5.9, n must be added to WorkList sometime during the execution

of ComputeAffected. Consequently, n must also be removed from WorkList (line 6

of ComputeAffected). If n is an assignment node, then def (n) is added to the set

AffectedVars (line 9 of ComputeAffected). But since vA is absent from AffectedVars,

it follows that vA 6∈ def (n). �

For clarity of exposition, we will henceforth refer to the property formalized in

Lemma 5.12 as the “not-affected” property in our arguments.

Example 5.6 Consider the peeled program in Fig. 5.15 along with its DDG in Fig. 5.16.

Recall that nodes in the DDG are named such that node ni corresponds to the statement

at line i of the peeled program. The value of variable S computed in the peeled node (line 5

in Fig. 5.15) of the first loop is used to define array A1 in the body of the second loop (line

7). Furthermore, the value of variable S computed in line 5 is used to initialize the value

of S1 in line 10. Thus, the algorithm initializes the worklist with the non-peeled nodes n7

and n10 that are data dependent on the peeled node n5. Array A1 and variable S1 updated

at n7 and n10 respectively are marked as affected in line 9 of ComputeAffected. We

then add non-peeled nodes that have a data dependence on n7 and n10 to the worklist in

line 11 of the algorithm. Since array A1 is used in node n12 in the third loop to define

the variable S1, n12 is added to the worklist. Subsequently, the variable S1 updated at

n12 is marked as affected. No further non-peeled nodes have any data dependence on

n12 and the worklist therefore becomes empty. Function ComputeAffected therefore

terminates with {A1, S1} as the set of potentially affected variables/arrays. Note that

variable S updated in the first loop (line 3 of Fig. 5.15) is not marked as affected since

its value does not transitively depend on N or on any variable/array updated in peeled

nodes. �
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5.4 Computing the Difference Program ∂PN

In Section 5.3, we computed the ingredients to generate ∂PN from PN such that PN and

PN−1; ∂PN have the same effect on scalar variables and arrays of interest. For notational

convenience, in the remainder of this subsection, we use PN to denote the renamed version

of a given program, and PpN to denote the peeled version of the renamed program.

Generating the difference program ∂PN from the renamed and peeled program using

the set of affected variables computed previously is still a daunting task. In order to help

the reader better visualize the computation of difference program as well as to simplify the

proof of correctness, we present steps involved in the computation of ∂PN as a sequence of

simple program transformations. Fig. 5.18 presents a high level overview of this sequence

of transformations. We start with a peeled program PpN . We first canonicalize it to a

program Tp
N that consists of a sequence of statements of a specific form (explained in

Section 5.4.1). The statements in Tp
N corresponding to the peels of loops in PpN are then

moved to the end of Tp
N to obtain the program To

N . The resulting program To
N can be

viewed as the program P?N followed by the peels of all loops in PpN . For purposes of the

present discussion, we informally call the block of statements corresponding to the peels

of all loops as Peel(PN). A formal definition of Peel(PN) and an algorithm for computing

Peel(PN) from PN are given in Section 5.4.4. Note that, if variables/arrays of interest

are not those identified as affected by ComputeAffected, P?N can be replaced with

PN−1. This allows us to obtain the difference program as Peel(PN). In the subsequent

sections, we present each transformation in detail, describe the programs generated by

them and prove that they preserve the overall semantics of the program as far as the

variables/arrays of interest are concerned. This allows us to show that for a large class of

programs wherein the variables/arrays of interest have specific properties, it is possible to

use just the peels of loops in PpN as the difference program. This simplifies the computation

of ∂PN significantly.

We continue to use vA to denote a scalar variable or an array depending on the

context. If vA is an array, the discussion below applies to every individual element vA[j],

where j is an index in the allowed range of indices of array vA. However, for notational

convenience, we use vA (and not vA[j]) to refer to such an array element in the lemmas

below. Note that this implies that the proof, once completed, applies to an arbitrary
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PN−1

Peel(PpN)

PpN

P?N

Peel(PpN)

TpN ToN

PoN

Figure 5.18: Sequence of Program Transformations to Decompose PpN into PN−1; Peel(PpN )

element of the array vA, and hence to the whole of vA.

5.4.1 Canonicalizing the Program

In this section, we describe a simple transformation of the program PpN that allows us

to view the program as a linear sequence of statements of a specific form. The transfor-

mation is only meant for purposes of simplifying the proofs of lemmas in the subsequent

subsections and making them more approachable.

For every program PN that can be generated by the grammar shown in Fig. 3.2, we

rewrite the corresponding peeled program PpN as a linear sequence of statements of the

form:

if(C) then S else skip,

where skip is shorthand for the assignment statement x = x; for an arbitrary scalar

variable x in PpN . The program fragment S is either (i) a loop, or (ii) a peel of a loop, or

(iii) an assignment statement outside loops and peels in PpN . The conditional expression

C is a conjunction of Boolean expressions along the True (resp. False) branches of all the

conditional branch nodes b within the scope of which the program fragment S occurs in

the program PpN . Since skip does not change values of any variables or arrays, we omit

the else part in our subsequent discussion for notational clarity. Henceforth, we refer to

statements in this form as guarded statements.

We now describe the function Transform in Algorithm 7 that canonicalizes the
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Algorithm 7 Transform
(
(Locsp,CE p, µp): peeled program PpN

)
1: Tp

N := (Locs ,CE , µ), where Locs = ∅, CE = ∅, µ = ∅;

2: PpN := CollapseLoopBody(PpN);

3: PpN := CollapseLoopPeel(PpN);

I The collapsed CFG of PpN is a directed acyclic graph (DAG).

4: BranchNodes := {n ∈ Locsp | n is a branch node};

5: nprev := FreshNode(); . Create a start node and designate it as the previous node

6: Locs := Locs ∪ nprev;

7: WorkList := TopologicalSort(Locsp);

8: while WorkList is not empty do

9: Remove a node n from head of WorkList;

10: if n 6∈ BranchNodes then . n can a collapsed loop, collapsed peel or an

assignment

11: C := True;

12: for each branch node b ∈ BranchNodes do

13: ipd := ImmediatePostDomminator(b);

14: if b
Locsp
 n ∧ ¬

(
b

Locsp
 ipd ∧ ipd Locsp

 n
)

then

15: if ∃n′ ∈ Locsp. (b, n′, tt) ∈ CEp ∧ n′ Locs
p

 n then

16: C := C ∧ µp(b);

17: else

18: C := C ∧ ¬µp(b);

19: nfresh := FreshNode();

20: µ(nfresh) := ‘if(C) then µp(n)’;

21: CE := CE ∪ (nprev, nfresh,U);

22: Locs := Locs ∪ nfresh;

23: nprev := nfresh;

24: Tp
N := UnCollapseLoopBody(Tp

N);

25: Tp
N := UnCollapseLoopPeel(Tp

N);

26: return Tp
N ;

input program PpN . Note that PpN is the program obtained after renaming the variables

and arrays in the program PN using the function Rename (as described in Section 5.3.1)
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and peeling all loops in the renamed program using the function PeelAllLoops (as

described in Section 5.3.2).

We use Tp
N to denote the program generated as a result of this transformation. The

function first creates an empty CFG for the program Tp
N in line 1. We then use the

function CollapseLoopBody (line 2) to collapse the nodes and edges in each loop of

the program PpN into its loop-head and the function CollapseLoopPeel (line 3) to

collapse the nodes and edges in the peel of each loop in the program PpN into a single

node. We collect all the conditional branch nodes of the peeled program PpN in the set

BranchNodes in line 4. As the first step towards creating the program Tp
N , we create

a new start node in the CFG of Tp
N in line 5, and mark it as the previous node nprev.

Subsequently, new nodes added to the set of nodes Locs of the program Tp
N during the

transformation and are always linked to nprev. We use the function TopologicalSort

to sort the set of nodes in the program PpN in a topological order. The sorted list is stored

in WorkList in line 7.

The loop in lines 8–23 iterates over the sorted list of nodes in the worklist, processing

one node at a time to generate the guarded assignment form for each node in the CFG

that is either a collapsed loop, a collapsed peel, or an assignment statement. We remove

a node n at the head of the worklist in line 9. For all nodes n that are not branch nodes

(line 10), we transform the statement at node n into its guarded assignment form. In

lines 11–18, we generate the guard condition C for node n, and in lines 19–23, we create

the guarded assignment statement with the appropriate program fragment and insert it

into the CFG of Tp
N .

For nodes n that are not within the scope of any conditional branch nodes, the

conditional expression C in the guard must be set to True. Hence, we initialize the guard

condition C to True in line 11. The loop in lines 12–18 accumulates the conditional

expressions at each branch node b that has n within its scope. A node n is within the

scope of a branch node b if there is a path from the node b to the node n that does not

go thorough the immediate post-dominator of b. This condition is checked in line 14.

Next, in line 15, we check if there is a path along the True edge of branch b leading upto

node n. If so, we conjunct the conditional expression at node b with condition C (line 16).

Otherwise, there is a path along the False edge of branch b leading upto the node n. Then,

we conjunct the negated conditional expression at node b with condition C (line 18).
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Once the guard condition C is computed, we create and insert the guarded state-

ment in the CFG. We first create a fresh node nfresh in line 19. We label the guarded

assignment statement at node nfresh in line 20 using the computed guard condition C and

the statement at node n in PpN as the program fragment S. We then add an edge in CFG

between the previous node nprev and the new node nfresh in line 21. Next, we add the

node nfresh to the list of nodes in the CFG (line 22) and mark it as the previous node

(line 23).

Finally, we re-introduce the nodes and edges in the body of each loop using the

function UnCollapseLoopBody in line 24 and the nodes and edges in the peel of each

loop using the function UnCollapseLoopPeel in line 25. The function returns the

canonicalized program Tp
N at line 26.

Note that if a variable/array element is used in the conditional expression at a branch

node b, then it must have been updated (if at all) in an assignment node that has a control

flow path to b. From the no-overwriting property as stated in Lemma 5.4, it now follows

that the same variable/array element cannot be updated in any node that has a control

flow path from b. This includes all nodes within the scope of branch b. This interesting

property allows us to prove the following lemma on the function Transform.

Lemma 5.13 Let Tp
N be the canonicalized version of PpN computed using function Trans-

form. Let n be a node corresponding an assignment statement in the CFG of PpN (and

hence Tp
N). Let π (resp. π′) be a path in the collapsed CFG of PpN (resp. Tp

N) starting

from the state σ. Then the following hold.

1. n is reached along π iff n is also reached along π′.

2. The program state σn is computed at node n along π iff the program state σn is

computed at node n along π′.

Proof. We consider a path π in the collapsed CFG of PpN corresponding to an execution

starting from σ. Let n be a node corresponding to an assignment statement along path

π. Let π̂ be the prefix of π that ends at n. We prove by induction on the length of

π̂ that n is also reached along π′ and the program state computed at n along π is the

same as the state at n along π′. The proof crucially uses the fact that the guards of

all statements in Tp
N that do not correspond to statements in nodes along π evaluate to

False. The reasons for this are (i) every such guard has a conjunct that is the negation of

119



some branch condition b that evaluates to True along π, (ii) the consequence of the no-

overwriting property stated above, and (iii) sequencing of statements in topological index

order in Tp
N . In particular, (ii) and (iii) above ensure that the values of all variables/array

elements used in the branch node b along π are the same as the corresponding values used

in b along π′.

The converse direction of the proof is similar. �

We now informally state several properties about the canonicalized program Tp
N :

1. Every node labeled with an assignment statement in the program PpN appears exactly

at one unique location in the program Tp
N . Thus, there exists a bijection function

F P that maps the assignment nodes in Tp
N to the corresponding assignment nodes

in PpN and a bijection function FT that maps the assignment nodes in PpN to the

corresponding assignment nodes in Tp
N .

2. Every node (including conditional branch nodes) within a loop body/peel in the

program PpN appears exactly at one unique location in the program Tp
N . Thus,

there exists a bijection function GP that maps the nodes within loop body/peel in

Tp
N to the corresponding nodes in PpN and a bijection function GT that maps the

nodes within loop body/peel in PpN to the corresponding nodes in Tp
N .

3. A dependence edge (n1, n2) exists between nodes with assignment statements n1 and

n2 in the program Tp
N if and only if the dependence edge (F P(n1), F

P(n2)) exists in

the program PpN .

4. A dependency edge (b, n) exists between a conditional branch node b and a node with

assignment statement n in the program Tp
N if and only if either b and n both occur

within the same loop body/peel of a loop and the dependency edge (GP(b), FP(n))

exists in PpN , or if n appears in the program fragment S in a guarded assignment

statement of the form ‘if(C) then S else skip’, where node b refers to the conditional

branch node labeled with the condition C. In the latter case, there is a dependency

edge (bi, F
P(n)) from at least one conditional branch node bi in the program PpN

whose condition is used to form the condition C at node b in Tp
N .

Observe that after the transformation, there are potentially many more conditional

branch nodes in the CFG of Tp
N as compared to the CFG of PpN . Note that renaming
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(as described in Section 5.3.1) ensures that each use of a variable/array gets mapped

to exactly one definition along each path in the program. Thus, due to renaming, the

variables/arrays used in a conditional expression are not modified along any branch of the

conditional statement. These facts allow the function Transform in Algorithm 7 to use

the same conditional expression µ(b) of a branch node b of program PpN at several program

locations in the canonicalized program Tp
N where the expression µ(b) is replicated as a

conjunct in the conditional expression C.

We end this subsection with an illustration of the program transformation achieved

by applying the technique discussed above on an example with loops and branch state-

ments.

Example 5.7 Consider the peeled program PpN shown in Tab. 5.1(a). The variables and

arrays of the input program are renamed (as described in Section 5.3.1) ensuring that

along each path of the program the value of a variable or an array element is accessible

till the end of the path and all the loops in the program are peeled (as described in

Section 5.3.2). We number the lines in the program such that the statements in loops

(and in peels) have the same line number but with an alphabet appended when multiple

statements are present. This numbering allows us to refer to the program statements with

a consistent line number even after collapsing loops and peels. PpN has three peeled loops,

L1 (lines 4a and 4b), L2 (lines 8a and 8b) and L3 (lines 11a and 11b). Loops L1 and L2

along with their peels are within the scope of the conditional branch statement in line 2.

Loop L3 and its peel are not within the scope of any branch statement.

Tab. 5.1(b) shows the program Tp
N generated by our transformation. To distinguish

the statements in PpN from those in Tp
N , the line numbers of statements in Tp

N are suffixed

with a prime symbol. As can be seen, Tp
N is a linear sequence of guarded statements.

The line numbers of each guarded statement in Tp
N matches the line number of the corre-

sponding statement in PpN . Notice that every assignment statement in PpN appears exactly

at one unique location in Tp
N . �

5.4.2 Reordering the Peels

We now reorder the statements in the program Tp
N such that all guarded statements

corresponding to peels of loops are executed after all other guarded statements. However,
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Table 5.1: (a) Program PpN , (b) Transformed Program TpN , (c) Transformed & Reordered Pro-

gram TON and (d) Program PoN / Program P?N ; Peel(PpN )

1. S = 10;

2. if(S > 5) {

3. S1 = 1;
4a. for(i=0; i<N-1; i++) //Loop L1

4b. A1[i] = A[i] + 1;
5. A1[N-1] = A[N-1] + 1; //Peel of L1

6. } else {

7. S1 = 20;
8a. for(i=0; i<N-1; i++) //Loop L2

8b. A1[i] = A[i];
9. A1[N-1] = A[N-1]; //Peel of L2

10. }
11a. for(i=0; i<N-1; i++) //Loop L3

11b. A2[i] = A1[i] + S1;
12. A2[N-1] = A1[N-1] + S1; //Peel of L3

1’. if(true) S = 10;

3’. if(S > 5) S1 = 1;

4’. if(S > 5) Loop L1;

5’. if(S > 5) Peel of L1;

7’. if(!(S > 5)) S1 = 20;

8’. if(!(S > 5)) Loop L2;

9’. if(!(S > 5)) Peel of L2;

11’. if(true) Loop L3;

12’. if(true) Peel of L3;

(a) (b)

1’. if(true) S = 10;

3’. if(S > 5) S1 = 1;

4’. if(S > 5) Loop L1;

7’. if(!(S > 5)) S1 = 20;

8’. if(!(S > 5)) Loop L2;

11’. if(true) Loop L3;

5’. if(S > 5) Peel of L1;

9’. if(!(S > 5)) Peel of L2;

12’. if(true) Peel of L3;

1. S = 10;

2a. if(S > 5) {

3. S1 = 1;

4a. for(i=0; i<N-1; i++) //Loop L1

4b. A1[i] = A[i] + 1;

6a. } else {

7. S1 = 20;

8a. for(i=0; i<N-1; i++) //Loop L2

8b. A1[i] = A[i];

10a. }

11a. for(i=0; i<N-1; i++) //Loop L3

11b. A2[i] = A1[i] + S1;

2b. if(S > 5) {

5. A1[N-1] = A[N-1] + 1; //Peel of L1

6b. } else {

9. A1[N-1] = A[N-1]; //Peel of L2

10b. }

12. A2[N-1] = A1[N-1] + S1; //Peel of L3

(c) (d)

122



the relative ordering among the guarded statements corresponding to peels is preserved.

We use To
N to denote the program obtained after this reordering.

Example 5.8 Continuing with the canonicalized program Tp
N shown in Tab. 5.1(b), the

reordered program To
N is shown in Tab. 5.1(c). The line numbers follow the same pattern

described in Example 5.7. Notice that in To
N the guarded statements corresponding to

peels at lines 5′, 9′ and 12′ appear after all other statements in the program. �

Let vA be a variable/array in PpN that is not identified as affected by function Com-

puteAffected. The following lemmas establish that if programs Tp
N and To

N are ex-

ecuted from the same state σ, they always compute the same value of vA. Specifically,

Lemma 5.14 shows that all data dependencies that potentially have a bearing on the

value of vA are the same in Tp
N and To

N . Lemma 5.15 uses this to show that the value

of vA computed by Tp
N and To

N are the same. For clarity of exposition in the following

discussion, when we say that there is a data dependence path from ni to nj in a program,

we mean that there is a path from ni to nj in the DDG of the program. Similarly, when

we say that there is a control dependence path from ni to nj, we mean that there is a

data dependence path from ni to a conditional branch node within whose scope nj lies.

Lemma 5.14 Let vA be a scalar variable/array that is absent from AffectedVars when

ComputeAffected is invoked on PpN . Let n be a node in PpN such that vA ∈ def (n).

For every node n′ in PpN , there is a data/control dependence path from n′ to n in Tp
N iff

there exists such a path in To
N .

Proof. Consider nodes n and n′ in PpN (hence also in Tp
N and To

N). We consider two

cases.

1. Suppose there is a data/control dependence path from n′ to n in Tp
N . From our

construction of Tp
N , we know that there exists such a data/control dependence path

in PpN as well. We now show that such a data/control dependence path also exists

in To
N by considering two sub-cases.

(a) Suppose n is a non-peeled node in PpN . Since vA is not identified as affected,

by the not-affected property (Lemma 5.12), we have that n′ is not a peeled

node. Therefore, both n and n′ are non-peeled nodes. Since the relative order-

ing of all non-peeled nodes is preserved by our reordering transformation, the

data/control dependence between n and n′ continues to exist in To
N as well.
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(b) Suppose n is a peeled node in PpN . If n′ is also a peeled node, then since

the relative ordering among the peeled nodes is preserved by reordering, the

data/control dependence between n and n′ continues to exist in To
N . On the

other hand, if n′ is a non-peeled node, since all non-peeled nodes precede all

peeled nodes after reordering, the data/control dependence exists in To
N in this

case as well.

2. Suppose there is a data/control dependence path from n′ to n in To
N . We show that

such a dependence path exists in Tp
N by considering the following sub-cases.

(a) If both n′ and n are non-peeled (resp. peeled) nodes, then since reordering

does not change the relative ordering of the non-peeled (resp. peeled) nodes,

the dependence is present in Tp
N .

(b) The case where n is a non-peeled node and n′ is peeled node cannot arise, since

all non-peeled nodes appear before peeled nodes in To
N .

(c) If n′ is a non-peeled node and n is a peeled node, there are two further sub-cases.

If n′ is ordered before n in Tp
N then the dependence is present in Tp

N as well.

Otherwise, we ask if the dependence from n′ to n in To
N is a read-after-write

or write-after-write. Since n is ordered before n′ in Tp
N , by the no-overwriting

property (Lemma 5.4), both n and n′ cannot update the same renamed variable.

Therefore, the dependence from n′ to n in To
N cannot be write-after-write,

and hence must be read-after-write. This requires a variable/array element

in uses(n) to also be present in def (n′). Such a variable/array element must

have been updated (if at all) prior to its use in node n. Once again, by the

no-overwriting property, this variable/array element cannot be updated by n′,

which appears after n in Tp
N . This completes the proof. �

Lemma 5.15 Let vA be a scalar variable/array that is absent from AffectedVars upon

invocation of ComputeAffected on PpN . If Tp
N and To

N are executed from the same

state σ, then vA has the same value on termination of both programs.

Proof. Follows from Lemma 5.14 and the fact that reordering does not change the indi-

vidual guarded statements in the canonicalized program Tp
N . �
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5.4.3 De-canonicalizing the Reordered Program

Recall that our aim is to decompose the program PpN into two program fragments, the

program PN−1 and the difference program ∂PN . We have seen above that the reordering

step already achieves the purpose of moving the guarded statements corresponding to

peels to the end of the program, providing a good candidate for the difference program

∂PN . However, the part of the reordered program that precedes the guarded statements

corresponding to peels may not have syntactic similarity with PN−1 in general. In order

to remedy this situation, we now “undo” the canonicalization process (as described in

Section 5.4.1) that allowed us to view the program PpN as a linear sequence of guarded

statements. Specifically, we transform the guarded statements back to statements of the

form that were present in PpN to begin with. We do this separately for the guarded

statements corresponding to peels, and for the part of To
N that precedes these, so that we

obtain a program fragment that is syntactically similar to PN−1 followed by a difference

program. In the subsequent discussion, we call the resulting de-canonicalized program

PoN .

Example 5.9 Consider the reordered program To
N from the example shown in Tab.

5.1(c). The program PoN shown in Tab. 5.1(d) is obtained by de-canonicalization. The

line numbers follow the pattern similar to the program PpN as described in Example 5.7.

It is worth noticing that, the statements corresponding to peels of loops appear after all

other statements in PoN and part of program PoN that precedes the peels is syntactically

similar to PN−1. �

Notice that after de-canonicalization, there may be more conditional branch nodes

in the CFG of PoN as compared to the CFG of PpN but fewer conditional branch nodes

as compared to the CFG of To
N . Since the canonicalization transformation is seman-

tics preserving (Lemma 5.13), the reverse transformation is also semantics preserving,

establishing the correctness of de-canonicalization. Following lemma formalizes this fact.

Lemma 5.16 Let PoN be the de-canonicalized version of To
N . Let n be a node correspond-

ing an assignment statement in the CFG of To
N (and hence PoN). Let π (resp. π′) be a

path in the collapsed CFG of To
N (resp. PoN) starting from the state σ. Then the following

hold.

1. n is reached along π iff n is also reached along π′.
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2. The program state σn is computed at node n along π iff the program state σn is

computed at node n along π′.

Proof. The proof is similar to that shown in Lemma 5.13. �

The program PoN obtained after de-canonicalization satisfies properties similar to

those stated during the transformation to the canonicalized program Tp
N in Section 5.4.1.

Below, we state these properties informally:

1. Every node labeled with an assignment statement in the program To
N appears exactly

at one unique location in the program PoN . Thus, there exists a bijection function

F P that maps the assignment nodes in To
N to the corresponding assignment nodes

in PoN and a bijection function FT that maps the assignment nodes in PoN to the

corresponding assignment nodes in Tp
N .

2. Every node (including conditional branch nodes) within a loop body/peel in the

program PoN appears exactly at one unique location in the program To
N . Thus,

there exists a bijection function GP that maps the nodes within loop body/peel in

To
N to the corresponding nodes in PoN and a bijection function GT that maps the

nodes within loop body/peel in PoN to the corresponding nodes in To
N .

3. A dependence edge (n1, n2) exists between nodes with assignment statements n1 and

n2 in the program To
N if and only if the dependence edge (F P(n1), F

P(n2)) exists in

the program PoN .

4. A dependency edge (bi, n) exists between a conditional branch node bi and a node

with assignment statement n in the program PoN if and only if either bi and n

both occur within the same loop body/peel of a loop and the dependency edge

(GT(bi), F
T(n)) exists in To

N , or if n appears in the program fragment S in a guarded

assignment statement of the form ‘if(C) then S else skip’, where node b refers to

the conditional branch node labeled with the condition C. In the latter case, there

is a dependency edge (b, FT(n)) from a conditional branch node b in the program

To
N whose condition C has a conjunct with the expression at the node bi from PoN .
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5.4.4 Peels of Loops as the Difference Program

Recall from Section 5.3.4 that P?N is effectively PN with the peels removed. This is exactly

what we get by de-canonicalizing the part of To
N that precedes the guarded statements

corresponding to peels. Therefore, the program PoN can be viewed as the sequential

composition of P?N and the de-canonicalized version of guarded statements corresponding

to peels of loops in To
N .

Definition 5.2 The de-canonicalized version of the guarded statements corresponding to

peels of loops in To
N is called Peel(PpN).

It follows from Definition 5.2 that PoN can be written as P?N ; Peel(PpN). It turns

out that Peel(PpN) can be constructed directly from PN without having to go through

canonicalization, reordering and de-canonicalization. We now describe an algorithm for

constructing the program Peel(PpN). We start with the CFG of the peeled program PpN .

Recall from Section 5.3.2 that PeelNodes denotes the set of peeled nodes in PN . Let

CondNodes be the set of all non-peeled conditional branch nodes b such that there is a

peeled node n within the scope of the branch b. In other words, if d denotes the immediate

post-dominator of b, there is a path from b to d that passes through n. We define Locs to

be the set PeelNodes ∪ CondNodes. Only these nodes in the CFG of PpN are relevant for

the construction of Peel(PpN).

The function ProgramPeel, presented in Algorithm 8, generates the program

Peel(PpN) with the peeled nodes and their enclosing branches. The function takes the

peeled program PpN and the set of peeled nodes PeelNodes (computed by function Pee-

lAllLoops in Section 5.3.2). The program Peel(PpN) inherits the skeletal structure of

the peeled program PpN as we copy the CFG of the input program PpN in line 1. We next

compute the set CondNodes consisting of the conditional branch nodes that enclose a peel

of a loop in the peeled program PpN in line 2. We retain only the peeled nodes and the

nodes in the set CondNodes, in line 3. The loop in lines 4–9 iterates over each node that

must be retained and ensure that its out-going edges end up in a node that is retained.

The loop in lines 5–9 iterates over each out-going edge (n, n′, c) that got removed and

does the following. We first compute the set of nodes in PpN that post-dominate the node

n′ using the function Post-Dominators (line 6). Only the nodes in PDNodes ∩ Locs

are retained in the CFG of Peel(PN). We then identify the node n′′ that is strictly post-

127



Algorithm 8 ProgramPeel((Locsp, CEp, µp): peeled program PpN , PeelNodes: peeled

statements)

1: Peel(PpN) := (Locs , CE, µ), where Locs := Locsp, CE := CEp, and µ := µp;

2: CondNodes := {n | n Locsp
 n′ ∧ n′ Locs

p

 n′′} where n is a non-peeled conditional branch

node, n′ is a peeled node and n′′ is the immediate post-dominator of n;

3: Locs := PeelNodes ∪ CondNodes ∪ {nstart, nend}; . Retain only the peeled nodes,

their enclosing non-peeled branches, and the start and end nodes

4: for each node n ∈ Locs do

5: for each edge (n, n′, c) ∈ CEp do

6: PDNodes := Post-Dominators(n′);

7: Let n′′ be the node that is strictly post-dominated by each node in PDNodes

∩ Locs ;

8: CE := CE \ {(n, n′, c)};

9: CE := CE ∪ {(n, n′′, c)};

10: return Peel(PpN);

dominated by each node in the set of retainable post-dominators of n′ (line 7). We then

remove the edge (n, n′, c) (line 8) and add the edge (n, n′′, c) (line 9). Finally, the function

returns the program Peel(PpN) in line 10.

Example 5.10 Consider the peeled program PpN shown in Tab. 5.1(a). The program

has a non-peeled conditional branch statement on line 2. The peeled statements on lines

6 and 13 are within the scope of the conditional branch statement on line 2. Thus,

CondNodes = { 2 } and Locs = { 2b, 5, 6b, 9, 10b, 12 }. The program Peel(PpN) is the

program fragment consisting of the nodes in the set Locs in Tab. 5.1(d). Notice that the

non-peeled conditional branch node in PpN (on line 2) that has the peeled nodes within

its scope is retained in Peel(PpN) along with the peels of loops. �

Recall that our goal is to decompose the given program PN such that PN and

PN−1; ∂PN have the same effect on scalar variables and arrays of interest. By Lemma

5.11, for variables/arrays vA that are absent from AffectedVars, if we execute PN−1 and

P?N starting from the same state σ, then vA has the same value on termination of both

programs. This allows us to relate the computation in the programs PoN , P?N ; Peel(PpN)

and PN−1; Peel(PpN) as formalized in the lemma below.
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Lemma 5.17 Let PpN be a peeled program and let vA be a scalar variable/array in PpN

that is absent from AffectedVars when ComputeAffected is executed on PpN . If PoN

and PN−1; Peel(PpN) are executed from the same state σ, then vA has the same value on

termination of both programs.

Proof. We break the proof in two parts. We first show that if PoN and P?N ; Peel(PpN) are

executed starting from the same state σ, then vA has the same value on termination of

both programs. This follows easily from Lemmas 5.13, 5.15 and 5.16.

Next we show that if P?N ; Peel(PpN) and PN−1; Peel(PpN) are executed from the same

state σ, then vA has the same value on termination of both programs. We prove this part

by case analysis.

Suppose the last update to vA in P?N ; Peel(PpN) happens in a non-peeled node in P?N .

Then, the proof follows immediately from Lemma 5.11.

Suppose the last update to vA in P?N ; Peel(PpN) happens in a peeled node n in

Peel(PpN). Let S denote the set of variables/arrays vA′ such that the updated value of vA

at node n depends on the values of each vA′ ∈ S on termination of P?N . There are two

sub-cases to consider.

If no vA′ ∈ S is identified as affected by ComputeAffected, then by Lemma 5.11

the value of every such vA′ is the same after termination of P?N and PN−1. This implies

that the value of vA is also same after termination of P?N ; Peel(PpN) and PN−1; Peel(PpN).

Now consider the case where some vA′ ∈ S is identified as affected by ComputeAf-

fected. Let L be a loop in PpN from which the node n is peeled. From the construction

of peeled nodes, we know that for every node n in the peel of L there is a corresponding

node n′ in the “uncollapsed” body of loop L such that the def and uses sets of the two

nodes n and n′ coincide. Since the update to vA at node n depends on vA′ that is identi-

fied as affected, the update to vA at node n′ in loop L must also depend on the affected

variable/array vA′. However, this would cause ComputeAffected to identify vA as an

affected variable. This leads to a contradiction since we know vA is not affected. This

completes the proof. �

Lemma 5.17 allows us to use Peel(PpN) as the difference program ∂PN if none of the

scalar variables and arrays of interest are identified as affected by ComputeAffected.

This holds true in the case where the post-condition ψr(N) does not refer to any affected
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Algorithm 9 SyntacticDiff(ϕ(N): pre-condition)

1: if ϕ(N) is of the form ∀i ∈ {0 . . . N} ϕ̂(i) then

2: if ϕ(N)⇒ ϕ(N − 1) is invalid then

3: throw “Unable to compute the difference pre-condition”;

4: ∂ϕ(N) := ϕ̂(N);

5: else if ϕ(N) is of the form ∃i ∈ {0 . . . N} ϕ̂(i) then

6: if ϕ(N − 1)⇒ ϕ(N) is invalid then

7: throw “Unable to compute the difference pre-condition”;

8: ∂ϕ(N) := ϕ̂(N);

9: else if ϕ(N) is of the form ϕ1(N) ∧ · · · ∧ ϕk(N) then

10: ∂ϕ(N) := SyntacticDiff(ϕ1(N)) ∨ · · · ∨ SyntacticDiff(ϕk(N));

11: else if ϕ(N) is of the form ϕ1(N) ∨ · · · ∨ ϕk(N) then

12: ∂ϕ(N) := SyntacticDiff(ϕ1(N)) ∨ · · · ∨ SyntacticDiff(ϕk(N));

13: else

14: ∂ϕ(N) := True;

15: if PN−1 updates scalars or array elements in ∂ϕ(N) then

16: ∂ϕ(N) := True;

17: return ∂ϕ(N);

variable/array. Note that using Peel(PpN) as the difference program ∂PN works even if

there are other variables/arrays (not of interest) that are affected.

5.5 Computing the Difference Pre-condition ∂ϕ(N)

We now present a syntactic routine, called SyntacticDiff, in Algorithm 9 for generation

of the difference pre-condition ∂ϕ(N). Although this suffices for all our experiments, for

the sake of completeness, in Section 6.3.2, we present a more sophisticated algorithm for

generating ∂ϕ(N) simultaneously with Pre(N).

Formally, given ϕ(N), the function SyntacticDiff from Algorithm 9 generates a

formula ∂ϕ(N) such that ϕ(N) ⇒ (ϕ(N − 1) � ∂ϕ(N)), where � is ∧ when ϕ(N) is a

universally quantified formula and is ∨ when ϕ(N) is a existentially quantified formula.

Observe that if such a ∂ϕ(N) exists for universally quantified formulas ϕ(N), then ϕ(N)
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⇒ ϕ(N − 1) must hold. Similarly, if such a ∂ϕ(N) exists for existentially quantified

formulas ϕ(N), then ϕ(N − 1) ⇒ ϕ(N) must hold. Therefore, we can use the validity of

ϕ(N) ⇒ ϕ(N − 1) and ϕ(N − 1) ⇒ ϕ(N), as a test to decide the existence of ∂ϕ(N) for

universally and existentially quantified formulas respectively.

Algorithm 9 incorporates the scenarios described above and boolean combinations

thereof. When ϕ(N) is of the syntactic form ∀i ∈ {0 . . . N} ϕ̂(i), we first check the

validity of ϕ(N)⇒ ϕ(N −1) in line 2. If this test fails, we report failure using the throw

statement in line 3. Otherwise, ∂ϕ(N) is set to ϕ̂(N) in line 4. Similarly, when ϕ(N) is of

the syntactic form ∃i ∈ {0 . . . N} ϕ̂(i), then ∂ϕ(N) is set to ϕ̂(N) in line 8, after checking

the validity of the ϕ(N − 1) ⇒ ϕ(N) (line 6). If the test in line 6 fails, again we report

failure using the throw statement in line 7. When ϕ(N) is of the syntactic form ϕ1(N) ∧

· · · ∧ ϕk(N), ∂ϕ(N) is computed by taking the difference of each individual conjunct and

disjuncting them as ∂ϕ1(N) ∨ · · · ∨ ∂ϕk(N) (line 10). Note that this operation results in

an over-approximation of the difference pre-condition. When ϕ(N) is of the form ϕ1(N)

∨ · · · ∨ ϕk(N), ∂ϕ(N) is computed by taking the difference of each individual disjunct

as ∂ϕ1(N) ∨ · · · ∨ ∂ϕk(N) (line 12). Finally, if ϕ(N) does not belong to any of these

syntactic forms (line 13) or if condition 2(a) of Theorem 5.1 is violated by the ∂ϕ(N)

computed in this manner (line 15), then we over-approximate ∂ϕN by True in lines 14

and 16.

Lemma 5.18 The difference pre-condition ∂ϕ(N) computed by SyntacticDiff is such

that (i) ϕ(N) ⇒ (ϕ(N − 1) � ∂ϕ(N)), where � is ∧ if ϕ(N) is a universally quantified

formula, and � is ∨ if ϕ(N) is an existentially quantified formula, and (ii) PN−1 does not

modify variables/arrays in ∂ϕ(N).

Proof. Condition (i) follows from the checks implemented in lines 2 and 6 of function

SyntacticDiff. The check in line 15 ensures condition (ii). This concludes the proof.�

Example 5.11 Consider the pre-condition ϕ(N) := ∀i ∈ [0, N) A[i] = 1∨∀i ∈ [0, N) A[i] =

2. SyntacticDiff in Algorithm 9 enters the recursive case in line 12. The recursive invo-

cations with inputs ϕ1(N) := ∀i ∈ [0, N) A[i] = 1 and ϕ2(N) := ∀i ∈ [0, N) A[i] = 2 com-

pute the difference pre-conditions ∂ϕ1(N) := A[N − 1] = 1 and ∂ϕ2(N) := A[N − 1] = 2

respectively. On returning from the recursive case, the algorithm stores the formula

A[N − 1] = 1 ∨ A[N − 1] = 2 in ∂ϕ(N). �
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Example 5.12 Consider the pre-condition ϕ(N) := ∃i ∈ [0, N) A[i] ≥ 100 ∧ ∃j ∈

[0, N) A[j] ≤ 10. The difference pre-condition computed by function SyntacticDiff in

Algorithm 9 is ∂ϕ(N) := A[N − 1] ≥ 100 ∨ A[N − 1] ≤ 10. Notice that the computed

difference pre-condition is an over-approximation. Had we computed the difference pre-

condition as ∂ϕ(N) := A[N − 1] ≥ 100∧A[N − 1] ≤ 10, then it would have resulted in a

contradiction. �

Example 5.13 For pre-condition formulas ϕ(N) := ∀i ∈ [0, N) A[i] = N and ϕ(N)

:= ∃i ∈ [0, N) A[i] = N the validity checks at lines 2 and 6 respectively in Algorithm

9 fail. Hence, the algorithm terminates with out being able to compute an appropriate

pre-condition. �

5.6 Verification using Full-Program Induction

In the previous sections, we discussed the algorithms for generating the two components

crucial to full program induction: the difference program ∂PN and the difference pre-

condition ∂ϕ(N). Before describing the full-program induction algorithm, however, we

present the strategy for computing the formula Pre(N) for strengthening pre- and post-

conditions.

5.6.1 Generating the Formula Pre(N− 1)

We use Dijkstra’s weakest pre-condition computation to obtain Pre(N − 1) after the

“difference” pre-condition ∂ϕ(N) and the “difference” program ∂PN have been generated.

The weakest pre-condition can always be computed using quantifier elimination engines

in state-of-the-art SMT solvers like Z3 if ∂PN is loop-free. In such cases, we use a set

of heuristics to simplify the calculation of the weakest pre-condition before harnessing

the power of the quantifier elimination engine. If ∂PN contains a loop, it may still be

possible to obtain the weakest pre-condition if the loop does not affect the post-condition.

Otherwise, we compute as much of the weakest pre-condition as can be computed from

the non-loopy parts of ∂PN , and then try to recursively solve the problem by invoking

full-program induction on ∂PN with appropriate pre- and post-conditions.
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Example 5.14 We apply Dijkstra’s weakest pre-condition computation on the Hoare

triple from the example in Fig. 5.1. The Hoare triple in Fig. 5.3 shows the strengthened

pre- and post-condition formulas. In this example, we use the convention that all variables

and arrays of PN−1 have the suffix Nm1 (for N-minus-1), while those of PN have the suffix

N . The first application of weakest pre-condition computation generates the formula

B Nm1[N − 2] = (N − 1)3 − (N − 2)3 on array B in the program. We substitute N

with N − 1 and rename array B Nm1 to B N generating the formula B N [N − 1] =

N3 − (N − 1)3. We use this formula to strengthen the post-condition of Peel(PpN) as

shown in Fig. 5.3. Effectively, the formula for strengthening the post-condition of PN can

be viewed as naturally lifted to its quantified form ∀i ∈ [0, N) B N [i] = N3 − (N − 1)3.

Re-applying weakest pre-condition computation generates the formula A Nm1[N −

2] = N3 − 2 × (N − 1)3 + (N − 2)3 on array A in the program. This formula is used to

further strengthen the pre-condition as shown in Fig. 5.3. Again, we substitute N with

N−1 and rename array A Nm1 to A N generating the formula A Nm1[N−1] = N3−2×

N3+(N−1)3. We use this formula to further strengthen the post-condition of Peel(PpN) as

shown in Fig. 5.3. Effectively, the formula for the post-condition of PN can be viewed as

naturally lifted to its quantified form ∀i ∈ [0, N) A N [i] = (N+1)3−2×N3+(N−1)3.�

5.6.2 The Full-program Induction Algorithm

The basic version of the algorithm for full-program induction is presented as the function

FPIVerify-Basic in Algorithm 10. The main steps of this algorithm are: checking

conditions 3(a), 3(b) and 3(c) of Theorem 5.1 (lines 1, 20 and 15 resp.), calculating the

weakest pre-condition of the relevant part of the post-condition (line 18), and strengthen-

ing the pre-condition and post-condition with the weakest pre-condition thus calculated

(line 19).

We first check the base case of the analysis (line 1). If the check fails, we have found

a valid counter-example and the algorithm terminates in line 3 after reporting the result

to the user. We then rename the variables and arrays in the program PN as well as the

pre- and post-conditions using Algorithm 3 and collect the set of glue nodes (line 4).

Next, we peel each loop in the renamed program PrN and collect the list of peeled nodes

(line 5) using Algorithm 4. Then, we compute the set of affected variables (line 6) using

Algorithm 6. If the number of affected variables (line 7) is non-zero then we report that
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Algorithm 10 FPIVerify-Basic(PN : program, ϕ(N): pre-condition, ψ(N): post-

condition)

1: if Base case check {ϕ(1)} P1 {ψ(1)} fails then

2: print “Counterexample found!”;

3: return False;

4: 〈PrN , ϕ(N), ψ(N),GlueNodes〉 := Rename(PN , ϕ(N), ψ(N)); . Renaming as

described in Section 5.3.1

5: 〈PpN ,PeelNodes〉 := PeelAllLoops(PrN);

6: AffectedVars := ComputeAffected(PpN ,PeelNodes);

7: if |AffectedVars| > 0 then

8: return False; . Unable to prove using full-program induction

9: ∂PN := ProgramPeel(PpN , PeelNodes);

10: ∂ϕ(N) := SyntacticDiff(ϕ(N));

11: i := 0;

12: Prei(N) := ψ(N);

13: c Prei(N) := True; . Cumulative conjoined pre-condition

14: do

15: if {c Prei(N − 1) ∧ ψ(N − 1) ∧ ∂ϕ(N)} ∂PN {c Prei(N) ∧ ψ(N)} then

16: return True; . Assertion verified

17: i := i+ 1;

18: Prei(N − 1) := LoopFreeWP(Prei−1(N), ∂PN); . Dijkstra’s WP

19: c Prei(N) := c Prei−1(N) ∧ Prei(N);

20: while Base case check {ϕ(1)} P1 {c Prei(1)} passes;

21: return False; . Failed to prove by full-program induction

we are unable to verify the program using full-program induction (line 8).

We compute the difference program ∂PN in line 9 using the function ProgramPeel

from Section 5.4 as none of the scalar variables and arrays of interest are in AffectedVars.

We then compute the difference pre-condition ∂ϕ(N) in line 10 using the function Syn-

tacticDiff (described in Section 5.5).

The loop in lines 14–20 iteratively checks if the assertion can be proved. We check
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the inductive step in line 15. In case the loop terminates via the return statement

in line 16, the inductive claim has been successfully proved. Otherwise, we compute

Dijkstra’s weakest pre-condition Prei(N−1) in line 18. Note that, the formula Prei(N−1)

strengthens the pre-condition and the same formula Prei(N), but with N − 1 substituted

with N , strengthens the post-condition. The variable Prei(N) is initialized to ψ(N) in

line 12. The variable c Prei(N − 1) accumulates the weakest pre-condition formulas in

each loop iteration and is initialized to True in line 13. The computed strengthening

Prei(N) is conjoined with the variable c Prei−1(N) in line 19. Since the weakest pre-

condition computed in every iteration of the loop (Prei(N − 1) in line 18) is conjoined to

strengthen the inductive pre-condition (c Prei(N − 1) in line 19), it suffices to compute

the weakest pre-condition of Prei−1(N) (instead of c Prei(N)∧ψ(N)) in line 18. Possibly

multiple iterations of strengthening of pre- and post-conditions is effected by the loop

in lines 14–20. After each strengthening, the base case is checked again in line 20 with

the strengthened pre- and post-conditions. If the loop terminates by a violation of the

condition in line 20, we report that verification by full-program induction failed.

Theorem 5.2 Upon successful termination, if algorithm FPIVerify-Basic returns True,

then {ϕN} PN {ψN} holds for all N ≥ 1.

Proof. Verifying the given Hoare triple requires establishing the conditions mentioned in

Theorem 5.1. The invocation of the functions Rename and PeelAllLoops in lines 4

and 5 resp. preserves the semantics of the program (refer the Lemmas 5.2 and 5.6 resp.).

The function ProgramPeel invoked at line 9 ensures condition 1 of Theorem 5.1 (refer

Lemma 5.17). The call to SyntacticDiff at line 10 in FPIVerify-Basic computes

the difference pre-conditions that satisfy conditions 2(a) and 2(b) (refer Lemma 5.18).

The conditions 3(a) and 3(b) of Theorem 5.1 are checked on lines 1 and 20 respectively.

The check at line 15 ensures that the return statement at line 16 executes only when

condition 3(c) of Theorem 5.1 is ensured. Hence, from Theorem 5.1, we conclude that

{ϕN} PN {ψN} holds for all N ≥ 1. �

Example 5.15 Consider the Hoare triple in the example from Fig. 5.1. The function

FPIVerify-Basic in Algorithm 10 first checks the base-case. The Hoare triple for the

base-case check shown in Fig. 5.2 is obtained by substituting N with the value 1. The

algorithm then computes the program Peel(PN) as shown in the Hoare triple in Fig. 5.3.
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Since the pre-condition in the given Hoare triple (Fig. 5.1) is True, the computed difference

pre-condition is also True. The inductive step for this example is not immediately proved.

Hence, the algorithm iteratively computes the weakest pre-conditions to strengthen the

pre- and post-condition formulas (as described in example 5.14), checking the base-case

and the inductive step in each iteration. The given post-condition is proved after two

iterations of strengthening the pre- and post-condition using the Hoare triple shown in

Fig. 5.3. �

5.7 Conclusion

We presented a novel property-driven verification technique, called full-program induction,

that performs induction over the entire program via parameter N . Significantly, our

analysis obviates the need for loop-specific invariants during verification. The technique

automatically computes the difference program as the peels of loops and enclosed branches

if any when the variables and arrays of interest are not affected. Interestingly, we only

need to ensure the Hoare semantics of the given program under the given pre- and post-

condition formulas and do not require full semantic equivalence. The technique computes

useful difference pre-conditions during the inductive step of the reasoning for a class of pre-

condition formulas. The full-program induction technique is general and can be applied

to array-manipulating programs that store integers, matrices, polynomials, vectors and

so on. This makes the technique capable of verifying APIs used in machine learning and

cryptography libraries.

Next chapter generalizes the difference computation in our technique to verify pro-

grams when variables and arrays of interest are identified as affected by the analysis. The

computation of the difference pre-conditions is generalized and performed along with the

simultaneous strengthening of pre- and post-conditions. The next chapter also presents an

implementation of the generalized algorithm in detail as well as the experimental results.
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Chapter 6

Generalizing Difference Computation

In this chapter, we extend the full-program induction technique described in Chapter 5 to

verify programs that access variables/arrays that are identified as affected. Specifically,

we generalize the difference computation algorithm by taking into account the affected

variables and arrays. We also present two different extended versions of the full-program

induction technique that add to the capabilities of its base version. We present an imple-

mentation of the technique in our publicly accessible tool Vajra [CGU20b] and show its

performance vis-a-vis state-of-the-art tools. A part of the work described in this chapter

has been published as a conference paper in TACAS 2020 [CGU20a] and as a journal

paper in STTT [CGU22].

6.1 Introduction

Programs vary widely in terms of accessing scalar variables and arrays within loops. When

none of the variables and arrays of interest are identified as affected (by the function

ComputeAffected described in Section 5.3.4) then the difference program (Peel(PpN)

computed in Section 5.4.4) consisting of only the peeled iterations of loops and their

enclosing branches suffices to prove the given post-condition using full-program induction.

However, programs may access variables/arrays that are indeed identified as affected.

Hence, the full-program induction algorithm described in Section 5.6.2 may not always

allow us to verify assertions in the given program. In this section, we give an overview

of the full-program induction technique extended with the generalized difference program

computation to verify programs that access affected variables/arrays.
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We demonstrate the working of the technique by focusing on the programs generated

by the grammar in Fig. 3.2. Recall that these programs manipulate arrays of parametric

size in sequentially composed, but non-nested loops. We allow a sub-class of quantified

and quantifier-free pre- and post-conditions that may depend on the symbolic parameter

N . As previously stated, we view the problem as checking the validity of a parameterized

Hoare triple {ϕ(N)} PN {ψ(N)} for all values of N (> 0), where the program PN is

parameterized in N , size of arrays in PN is a function of N and N is a free variable in

ϕ(·) and ψ(·).

6.1.1 Motivating Examples

We present a couple of examples that motivate the need for generalizing the method for

computing the difference programs and use the generalized version to extend the full-

program induction technique. The programs in these examples access variables/arrays

that are identified as affected by our analysis. We first highlight the challenges in verify-

ing the assertion using full-program induction when the given program accesses affected

variables/arrays. Then, we demonstrate the inductive step of the analysis using the dif-

ference programs computed using the generalized procedure. The first example illustrates

the need for the generalization of the difference program computation due to the presence

of “affected” scalar variables. The second example is used as a running example in this

chapter. The example illustrates the fact that loops may be retained in the difference

program and later simplified to enable the inductive step of our analysis for programs

where both arrays and scalars are identified as “affected”.

Fig. 6.1 presents a Hoare triple with a simple program and pre- and post-conditions

specified using assume and assert statements respectively. The program PN in the Hoare

triple from Fig. 6.1 performs the summation of the content of A into scalars S1 and S2

in sequentially composed loops. The post-condition states that S2 == 7 × N , for all

N > 0. Notice that value of S2 depends on the final value of S1 that is computed in

the peeled iteration of the second loop. Thus, our affected variable analysis (described

in Section 5.3.4) will identify variable S2 as affected. Although the program and the

post-condition in Fig. 6.1 are simple, the difference program consisting of only the peeled

iterations of loops (as computed in Section 5.4.4) does not suffice. The generalization

described in this chapter takes the affected variables into account while computing the
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// assume(true)

1. for (int t1=0; t1<N; t1=t1+1) {

2. A[t1] = 3;

3. }

4. S1 = 0;

5. for (int t2=0; t2<N; t2=t2+1) {

6. S1 = S1 + A[t2] + 1;

7. }

8. S2 = S1;

9. for (int t3=0; t3<N; t3=t3+1) {

11. S2 = S2 + A[t3];

12. }

// assert(S2 = 7×N)

Figure 6.1: Hoare Triple using an Affected Variable

difference programs. The full-program induction enable with this generalization proves

the post-condition in Fig. 6.1 within a few seconds.

As previously described in Chapter 5, full-program induction reduces checking the

validity of the Hoare triple in Fig. 6.1 to checking the validity of two “simpler” Hoare

triples, represented in Figs. 6.2(a) and 6.2(b). The base case is shown in Fig. 6.2(a), where

every loop in the program is statically unrolled a fixed number of times after instantiating

the program parameter N to 1. As the induction hypothesis, we assume that the Hoare

triple {ϕ(N −1)} PN−1 {ψ(N −1)} holds for values of N > 1. As previously stated, this

assumption does not relate to a specific loop in the program, but to the entire program

PN . For the first motivating example, the induction hypothesis states that the entire

Hoare triple in Fig. 6.1, after substituting N with N − 1, holds.

The inductive step of the reasoning is shown by the Hoare triple in Fig. 6.2(b). In

this step, we prove the post-condition, by automatically generating the computation to be
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// assume(true)

1. A[0] = 3;

2. S1 = 0;

3. S1 = S1 + A[0] + 1;

4. S2 = S1;

5. S2 = S2 + A[0];

// assert(S2 = 7)

(a)

// assume((N > 1) ∧ S2_Nm1 = 7×(N-1))

1. A[N-1] = 3;

2. S1 = S1_Nm1 + A[N-1] + 1;

3. S2 = S2_Nm1 + (S1 - S1_Nm1);

4. S2 = S2 + A[N-1];

// assert(S2 = 7×N)

(b)

Figure 6.2: (a) Base-case Hoare Triple and (b) Inductive-step Hoare Triple

performed after the program with parameter N − 1 has executed. Since the program PN

defines as well as uses the affected variable S2, the program Peel(PpN) (described in Section

5.4.4) does not suffice as the difference program ∂PN . Note that the statement at line 3

in Fig. 6.2(b) “rectifies” the value of the variable S2 using the difference of the value of

S1 in programs PN and PN−1. This statement would be absent from Peel(PpN). Also note

that this statement does not have a syntactic counterpart in Fig. 6.1. In general, there

may be multiple statements in the difference program computed during the inductive step

that do not have syntactic counterparts in the original program.

Now consider the Hoare triple shown in Fig. 6.3(a) (replicated here from Example

5.1 in Section 5.3). The program updates a scalar variable S and an array variable A. The

first loop adds the value of each element in array A to variable S. The second loop adds

the value of S to each element of A. The last loop aggregates the updated content of A

in S. The pre-condition ϕ(N) is a universally quantified formula on array A stating that

each element has the value 1. We need to establish the post-condition ψ(N), which is a

predicate on S and N. Note that the post-condition with non-linear terms makes it quite

challenging to prove the Hoare triple. State-of-the-art tools like VIAP [RL18], VeriAbs

[ACC+20], FreqHorn [FPMG19], Tiler [CGU17], Vaphor [MG16], and Booster

[AGS14] are unable to prove the post-condition correct in this example. In contrast, the

140



// assume(∀i∈[0,N) A[i] = 1)

1. S = 0;

2. for(i=0; i<N; i++) {

3. S = S + A[i];

4. }

5. for(i=0; i<N; i++) {

6. A[i] = A[i] + S;

7. }

8. for(i=0; i<N; i++) {

9. S = S + A[i];

10. }

// assert(S = N × (N+2))

(a)

// assume(∀i∈[0,N) A[i] = 1)

1. S = 0;

2. for(i=0; i<N; i++) {

3. S = S + A[i];

4. }

5. for(i=0; i<N; i++) {

6. A1[i] = A[i] + S;

7. }

8. S1 = S;

9. for(i=0; i<N; i++) {

10. S1 = S1 + A1[i];

11. }

// assert(S1 = N×(N+2))

(b)

Figure 6.3: (a) Running Example and (b) Its Renamed Version

full-program induction technique with generalized difference computation described in

this chapter proves the post-condition in Fig. 6.3(a) correct within a few seconds.

Since the program PN updates the same scalar variable S and the array A in multiple

sequentially composed loops, we rename the scalars and arrays such that each loop in PN

updates its own copy of scalar variables and arrays using the function Rename described

in Section 5.3.1. This ensures that when PN−1 terminates we have access to the values of

these variables and arrays after each loop in the program. Example 5.3 of Section 5.3.1

in Chapter 5 gives a detailed account of renaming our running example. For convenience,

we replicate the renamed version of the Hoare triple from Fig. 5.14(b) in Fig. 6.3(b). We

will use the Hoare triple in Fig. 6.3(b) as our running example to illustrate important

aspects of our technique.

The weakest loop invariants needed to prove the post-condition for the program in
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Fig. 6.3(b) are: ∀j ∈ [0, i) (A[j] = 1) ∧ (S = j) for the first loop (lines 2-4), ∀k ∈

[0, i) (A1[k] = N + 1) ∧ (A[k] = 1) ∧ (S = N) for the second loop (lines 5-7), and

∀l ∈ [0, i) (A1[l] = N + 1) ∧ (S1 = l × (N + 1) + N) for the third loop (lines 9-11).

Unfortunately, automatically deriving such quantified non-linear inductive invariants for

each loop is far from trivial. We now describe how full-program induction verifies the

post-condition in this example.

In the base case of our inductive reasoning, we instantiate the parameter N to a small

constant value (say N = 1). As a result, every loop in the program PN in Fig. 6.3(b) can

be statically unrolled a fixed number of times. The resulting Hoare triple can be easily

compiled to a first-order logic formula and verified using an SMT solver. As the induction

hypothesis, we assume that the Hoare triple {ϕ(N − 1)} PN−1 {ψ(N − 1)}, shown in

Fig. 6.4(a), holds for values of N > 1. This Hoare triple is obtained by substituting N

with N − 1 in the entire Hoare triple in Fig. 6.3(b).

The Hoare triple in Fig. 6.4(b), consisting of the difference program, is computed

during the inductive step. Intuitively, the difference program ∂PN recovers the effect

of the computation in PN on all scalar variables and arrays after the computation in

PN−1 has been performed. It includes the iterations of a loop in PN that are missed by

PN−1. When program statements are impervious to the value of N , the values computed

in such statements are the same in PN and PN−1, and hence, they may not need any

modification. However, ∂PN may contain code to “rectify” values of variables and arrays

that have different values at corresponding statements in PN vis-a-vis PN−1. The code,

possibly consisting of loops, to rectify the values of variables and arrays is further simplified

whenever possible. Consequently, not all program statements of PN in Fig. 6.3(b) may

have a syntactic counterpart in Fig. 6.4(b) and vice-versa. The inductive step may not be

immediately established, in which case we strengthen the pre- and post-conditions using

automatically inferred auxiliary predicates as shown in Fig. 6.4(b).

We defer a discussion of how our technique computes the programs used in the

inductive step in the Hoare triples shown in Figs. 6.2(b) and 6.4(c) to Section 6.2, where

we present algorithms for computation of the difference program (Section 6.2.1) and its

simplification (Section 6.2.2).
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// assume(∀i∈[0,N-1) A[i] = 1)

1. S_Nm1 = 0;

2. for(i=0; i<N-1; i++) {

3. S_Nm1 = S_Nm1 + A[i];

4. }

5. for(i=0; i<N-1; i++) {

6. A1_Nm1[i] = A[i]+S_Nm1;

7. }

8. S1 = S;

9. for(i=0; i<N-1; i++) {

10. S1_Nm1=S1_Nm1+A1_Nm1[i];

11. }

// assert(S1_Nm1 = (N-1)×(N+1))

(a)

// assume(N>1 ∧ A[N-1] = 1

// ∧ S1_Nm1 = (N-1)×(N+1)

// ∧ ∀i∈[0,N-1) A1_Nm1[i] = N

// ∧ S_Nm1 = N-1)

1. S = S_Nm1 + A[N-1];

2. for(i=0; i<N-1; i++) {

3. A1[i] = A1_Nm1[i] + 1;

4. }

5. A1[N-1] = A[N-1] + S;

6. S1 = S1_Nm1 + A[N-1];

7. S1 = S1 + (N-1);

8. S1 = S1 + A1[N-1];

// assert(S1 = N×(N+2) ∧ S = N

// ∧ ∀i∈[0,N) A1[i] = N+1)

(b)

Figure 6.4: (a) Induction Hypothesis Hoare Triple on PN−1 and (b) Inductive Step Hoare Triple

on ∂PN after Simplification and Strengthening

6.1.2 Instantiation of Full-Program Induction in Vajra

We have implemented the full-program induction technique in a prototype tool called Va-

jra. Written in C++, the tool is built on top of a compiler framework (LLVM/CLANG

[LA04]) and uses an off-the-shelf SMT solver (Z3 [MB08]) at the back-end. Our exper-

iments show that the full-program induction technique is able to solve several difficult

problem instances, which other techniques either fail to solve, or can solve only with the

help of sophisticated recurrence solvers. Vajra is significantly more efficient as compared

to other tools on a set of benchmarks.

Needless to say, various approaches have their own strengths and limitations, and
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the right choice always depends on the problem at hand. Full-program induction is no

exception, and despite its several strengths, it has its own limitations, which we discuss

in detail in Section 6.5.3.

The full-program induction technique is orthogonal to other verification approaches

proposed in literature, making it suitable to be a part of an arsenal of verification tech-

niques. It has already been incorporated within a verification tool, namely VeriAbs

[ACC+20]. Since the 2020 edition of the international software verification competition

(SV-COMP), VeriAbs invokes full-program induction (via our tool Vajra) in its pipeline

of techniques for verifying programs with arrays from the set of benchmarks in the veri-

fication competition (refer [ACC+20]).

The main contributions of the chapter can be summarized as follows:

• We elaborate the generalized algorithms for computing the difference program and

the difference pre-condition alongside weakest pre-condition computation. We ex-

tend the full-program induction technique with these generalized algorithms.

• We present generalizations of the full-program induction technique to programs with

multiple parameters and loops with increasing and/or decreasing loop counters.

• We present a new algorithm to compute a progress measure, based on the charac-

teristics of the difference program. This gives a measure of how easy it is to prove

the inductive step of our technique using constraint solving based techniques like

bounded model checking.

• We give rigorous proofs of correctness for the new and improved algorithms. We

demonstrate the algorithms using examples.

• We describe a prototype tool Vajra that implements the algorithms for performing

full-program induction, using (i) the compiler framework LLVM/CLANG for anal-

ysis and transformation of the input program and (ii) an off-the-shelf SMT solver,

viz. Z3, at the back-end to discharge verification conditions.

• We present an extensive experimental evaluation on a large suite of benchmarks that

manipulate arrays. Vajra outperforms the state-of-the-art tools VIAP, VeriAbs,

Booster, Vaphor, and FreqHorn, on the set of benchmark programs.
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Figure 6.5: Sequence of Steps to Compute the Simplified Difference Program ∂PN

The remainder of the chapter is organized as follows. Section 6.2 presents the gener-

alized difference program computation algorithm for programs that access affected vari-

ables/arrays. In Section 6.3, we extend the full-program induction algorithm to incorpo-

rate the generalized difference program computation algorithm. We present two different

extensions of the full-program induction algorithm that have a recursive invocation to

iteratively simplify the computed difference program and the difference pre-condition. In

Section 6.4, we present an algorithm to check whether the recursive application of our

technique will eventually be able to verify the given program. Section 6.5 presents the

generalizations of full-program induction in different problem settings. In Section 6.6, we

present the implementation of our technique in Vajra, its evaluation on a set of bench-

marks and comparison vis-a-vis state-of-the-art tools. We discuss related techniques from

literature in Section 6.7. Section 6.8 presents the concluding remarks.

6.2 Computing the Difference Program

In the previous chapter, we proved that using Peel(PpN) consisting only of peeled itera-

tions of loops and their enclosing branches suffices as the difference program ∂PN when

the variables/arrays of interest are absent from AffectedVars. However, if some of the

variables/arrays of interest are indeed identified as affected by ComputeAffected (de-

scribed in Section 5.3.4), we must include additional code in the difference program that

effectively “rectifies” the values of affected variables as computed by PN−1.

Computing the difference program ∂PN is, in general, a non-trivial task. We build on

the ideas used in Section 5.4 and discuss the computation of the difference programs ∂PN
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when variables/arrays of interest are identified as affected. Fig. 6.5 presents a high level

overview of the sequence of steps involved in the computation of a difference program.

We have already seen the initial steps, including renaming, peeling, computing the data

dependence graph and identifying affected variables, in Sections 5.3.1–5.3.4.

We now give an informal overview of the difference program computation. We first

move the peels of loops to the end of the program PpN and use the information about

data dependencies and affected variables computed previously to appropriately stitch

and modify them to obtain an unoptimized version of the difference program ∂PN . In

general, this modification may involve adding carefully constructed loops in the difference

program itself. It turns out that the difference program obtained in this way can often

be significantly optimized using simple optimization techniques. This includes things

like pruning superfluous computational steps and accelerating loops among others. We

include this optimization as the last step in our flow for generating the difference program.

Since peeling a program preserves its semantics (Lemma 5.6), in this section, we use the

notations PN and PpN interchangeably to denote the program under analysis. Similarly,

we use ∂PN and ∂PpN interchangeably to denote the difference program.

For better visualization of the computation of difference programs and to simplify the

correctness proofs, we divide the computation of ∂PN into a sequence of simple program

transformations, similar to the one described in Section 5.4. This sequence of transfor-

mations and the programs generated after each transformation are shown in Fig. 6.6.

We first canonicalize the peeled program PpN to the program Tp
N with linear sequence of

guarded statements, using the method described in Section 5.4.1. Now the program TN−1

can be obtained by substituting the symbolic parameter N with N−1. We now present an

intuitive description for the computation of the program T∂
N , when the variables/arrays

of interest in Tp
N are identified as affected.

We compute the program T∂
N such that {ϕ(N)} Tp

N {ψ(N)} holds iff {ϕ(N)}

TN−1; T∂
N {ψ(N)} holds, where “;” denotes sequential composition. This ensures a

parallel between the programs T∂
N and ∂PpN as well as the continuity of our technique

as described in Section 5.2. We start with the CFG of the peeled program Tp
N . We

begin by creating the CFG of T∂
N as a copy of the CFG of Tp

N . Since the CFGs of

Tp
N and T∂

N are a copy of each other, there is a bijection between the nodes in Tp
N

and T∂
N . Next we compute the set of affected variables AffectedVars using the function
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Figure 6.6: Sequence of Program Transformations to Decompose PpN into PN−1; ∂PN

ComputeAffected. We iterate over each node in the CFG of T∂
N . We retain in the

CFG of T∂
N all the peeled nodes PeelNodes and their enclosing conditional branch nodes

CondNodes (as computed in Section 5.4.4), as well as a subset of the non-peeled nodes. The

non-peeled nodes that update an affected variable/array are retained in the CFG, albeit

with a modified assignment statement labeled at the node. These modified statements

“rectify” the values of affected variables/arrays updated at the retained non-peeled nodes

such that these variables/arrays take the same value at the end of programs TN−1; T∂
N

and Tp
N . We elaborate on how such statements are computed in the next subsection. The

non-peeled nodes that do not access any affected variables are removed from the CFG of

T∂
N . When no assignment statements are retained in a loop body, then we remove the

loop from the CFG. Notice that while we remove nodes from the CFG of T∂
N , we do not

introduce new nodes during this entire process. As a result, we get a injective mapping

from the nodes in T∂
N to the nodes in Tp

N .

Since the de-canonicalization of Tp
N to PpN (described in Section 5.4.3) is effectively

simple and semantics preserving (Lemma 5.16), we de-canonicalize the programs TN−1

and T∂
N to the programs PN−1 and ∂PN respectively. Hence, the difference computation

described above for the canonicalized program Tp
N naturally extends to the program PpN .

In the next subsection, we describe the computation to generate the modified statements

at the retained non-peeled nodes and present an algorithm to compute the difference

program ∂PN . We also present its proof of correctness.
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6.2.1 Generating ∂PN for Programs with Affected Variables

We propose to construct a difference program whose CFG is “inherited” from the collapsed

CFG of the renamed and peeled program PpN . We perform simplifications of this control

flow structure while computing the difference program ∂PN . Specifically, all assignment

statements that update an affected variable/array but were earlier removed while con-

structing Peel(PpN), are retained with a possibly changed expression in the right hand side

of the assignment. As a part of the simplifications, some redundant loops and statements

may be removed. But the rest of the structure of ∂PN stays the same as PpN . Specifically,

we do not introduce new nodes in the difference program, and there is a natural injective

mapping, say γ, from the nodes in the CFG of the difference program ∂PN to a unique

node in the peeled program PpN . Thus, these modifications to the CFG of the difference

program ∂PN ensure that its control structure is still similar to that of the peeled program

PpN . As previously stated in Chapter 5, for every non-peeled node in the CFG of PpN , there

is a corresponding node in the CFG of PN−1 (resp. P?N) and vice-versa. This extends the

injective mapping from each node in the difference program to a unique node in PN−1

(resp. P?N).

To understand how the right hand side expressions of assignments may need to be

changed when constructing ∂PN , consider an execution of each of PN and PN−1; ∂PN

starting from the same initial state σ.

Definition 6.1 For every node n in the CFG of ∂PN and for every variable/array element

vA we say that vA has a rectified value at n if its value at n matches the value of vA at

γ(n). Otherwise, we say that vA has an unrectified value at n.

For every node n in ∂PN that updates an affected variable/array vA of interest, we

modify the right hand side of the assignment (if necessary) such that the right hand side

expression evaluates to the rectified value of vA at n. This expression is constructed in

such a manner that it uses the unrectified value of vA at n in its computation of the

rectified value. This construction allows us to establish an important property of the

resulting program ∂PN : every variable/array vA of interest has its rectified value at every

node n in ∂PN .

We now elaborate on how we construct the modified right hand side expression of an

assignment statement at node n in ∂PN that updates the affected variable/array vA. We
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assume that we have access to the rectified and unrectified values of all variables/arrays

vA′ used in the right hand side expression of the assignment statement at node γ(n) in PN .

The easiest way to do this would be to construct the right hand side expression exclusively

in terms of the rectified values of vA′ at node n. Note that, this results in a difference

program that is as complex as the original program PN . This defeats our purpose, since

full-program induction can succeed only if ∂PN is “simpler” than PN . Therefore, we do

not use this naive method and present an operator algebra to compute of the rectified

value of vA updated in the assignment statement in terms of its unrectified value and the

“difference” between the rectified and unrectified values of other variables/arrays that

have a data dependence to vA.

Let ◦ be a binary operator on a set S that denotes the domain of values of vari-

ables/arrays in PN . We say that e is the right identity element of ◦ if v ◦ e = v and e is

the left identity element if e ◦ v = v for each v ∈ S. We call v−◦ the right inverse element

of v under ◦ if v ◦ v−◦ = e and we call it the left inverse element if v−◦ ◦ v = e for each

v ∈ S. We say that ◦ is an associative operator if (u ◦ v) ◦w = u ◦ (v ◦w). We say that ◦

is a commutative operator if u ◦ v = v ◦ u. When the operator ◦ is associative, (u ◦ v)−◦

= (v−◦ ◦ u−◦).

For the following lemmas, we assume that ◦ is an associative operator, there exists

a left identity element under ◦ in S and each element in S has a right inverse under ◦.

Suppose w is an affected variable/array of interest. Let wN−1, uN−1, vN−1 denote the

values of w, u and v at the end of execution of PN−1. Let wN , uN , vN be the rectified

values of w, u and v at node n.

Lemma 6.1 Let n be a node in ∂PN such that the statement at γ(n) in PN is w := u ◦

v. Then, the rectified value of w is computed as wN := wN−1 ◦ ((vN−1)
−◦ ◦ ((uN−1)

−◦ ◦

uN) ◦ vN).

Proof. We proceed as follows:

1. wN := e ◦ wN

2. wN := (wN−1 ◦ (wN−1)
−◦) ◦ wN

3. wN := wN−1 ◦ ((wN−1)
−◦ ◦ wN)

4. wN := wN−1 ◦ ((uN−1 ◦ vN−1)−◦ ◦ (uN ◦ vN))
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5. wN := wN−1 ◦ ((vN−1)
−◦ ◦ (uN−1)

−◦ ◦ (uN ◦ vN))

6. wN := wN−1 ◦ ((vN−1)
−◦ ◦ ((uN−1)

−◦ ◦ uN) ◦ vN) �

Suppose ◦ is additionally a commutative operator. Then the following lemmas hold.

Lemma 6.2 Let n be a node in ∂PN such that the statement at γ(n) in PN is w := u ◦

v. Then, the rectified value of w is computed as wN := wN−1 ◦ (uN ◦ (uN−1)
−◦) ◦ (vN ◦

(vN−1)
−◦).

Proof. We continue from the proof of Lemma 6.1 and proceed as follows:

6. wN := wN−1 ◦ ((vN−1)
−◦ ◦ ((uN−1)

−◦ ◦ uN) ◦ vN)

7. wN := wN−1 ◦ (((uN−1)
−◦ ◦ uN) ◦ (vN−1)

−◦ ◦ vN)

8. wN := wN−1 ◦ ((uN−1)
−◦ ◦ uN) ◦ ((vN−1)

−◦ ◦ vN)

9. wN := wN−1 ◦ (uN ◦ (uN−1)
−◦) ◦ (vN ◦ (vN−1)

−◦) �

To use the equation from Lemma 6.2 for statements with non-commutative operators

such as {−,÷} often used in practice, we perform a simple transformation that allows

us to use commutative operators in-place of non-commutative ones. As an example of

this transformation, consider the expressions u− v and u/v. We transform them into the

expressions u + (−v) and u × (1/v) respectively. This allows us to use the equation in

Lemma 6.2 when for every element v ∈ S, the elements −v and 1/v are also in S.

Lemma 6.3 Let n be a node in ∂PN such that the statement at γ(n) in PN is w := w ◦

v. Then, the rectified value of w is computed as wN := wN ◦ (vN ◦ (vN−1)
−◦) along with

the presumption wN = wN−1.

Proof. Using the given presumption wN = wN−1, we have the definition of the identity

element as: e = wN ◦ (wN)−◦ = wN ◦ (wN−1)
−◦.

As the first step, we use the result from Lemma 6.2 and proceed as follows:

1. wN := wN−1 ◦ (wN ◦ (wN−1)
−◦) ◦ (vN ◦ (vN−1)

−◦)

2. wN := wN−1 ◦ e ◦ (vN ◦ (vN−1)
−◦)
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3. wN := wN−1 ◦ (vN ◦ (vN−1)
−◦)

4. wN := wN ◦ (vN ◦ (vN−1)
−◦) �

It is worth noting that the rectification described in Lemmas 6.1, 6.2 and 6.3 applies

not only when the set S is integers, i.e. integers are stored as array elements but even

when the set consists of matrices, vectors, and polynomials. When matrices are stored

as array elements, such arrays are called tensors. These are extensively used in machine

learning algorithms. Further, it applies to interesting operators such as ⊕, + mod x, ×

mod y as well as to other interesting algebraic structures. It is also worth mentioning

that for a restricted class of programs our technique extends to computing the differences

of programs that manipulate heaps.

The routine ProgramDiff presented in Algorithm 11 shows how the difference

program is computed. In line 1, we peel each loop in the program PN and collect the list

of peeled nodes using function PeelAllLoops from Algorithm 4 (refer Section 5.3.2).

Then, in line 2, we compute the set of affected variables using function ComputeAf-

fected from Algorithm 5 (refer Section 5.3.4). The difference program ∂PN inherits the

skeletal structure of the peeled program PpN after peeling each loop (line 3). Next, we

collapse all nodes and edges in the body of each loop into a single node identified with

the loop-head in the CFG of PpN using the function CollapseLoopBody in line 4. The

collapsed CFG of the resulting program ∂PN is a DAG with finitely many paths. We then

initialize a worklist of CFG nodes with nstart in line 5.

The while loop in lines 7–29 performs a breadth-first top-down traversal over the

DAG of ∂PN starting from the node nstart and processes one node at a time. We first

remove a node n from the worklist in line 8. We store the nodes that are already processed

by our algorithm in Processed (that is initialized in line 6). We add the node n removed

from the worklist to Processed in line 9. Next, the loop in lines 10–11 appends each

successor n′ of n to the worklist that is not already processed. We use the routine Succ

to obtain the list of successors of node n.

If n is a peeled node, then we retain it as is in the difference program (line 13).

Otherwise, we check if any scalar variable/array used at node n is affected at line 14. We

have defined the sub-routine HasAffectedVars that checks if the scalar variable/array

defined at node n is affected.
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Algorithm 11 ProgramDiff((Locs , CE, µ): renamed program PN , GlueNodes: set of

glue nodes)

1: 〈(Locsp, CEp, µp),PeelNodes〉 := PeelAllLoops((Locs , CE, µ));

2: AffectedVars := ComputeAffected((Locsp, CEp, µp),PeelNodes);

3: ∂PN := (Locs′, CE ′, µ′), where Locs′ := Locsp, CE ′ := CEp, and µ′ := µp;

4: ∂PN := CollapseLoopBody(∂PN);

I Function CollapseLoopBody collapses the nodes and edges of each

loop into its loop-head. Now the (collapsed) CFG of ∂PN is a DAG.

5: WorkList := (nstart); . Add the start node to the worklist

6: Processed := ∅;

7: while WorkList is not empty do

8: Remove a node n from head of WorkList;

9: Processed := Processed ∪ {n};

10: for each node n′ ∈ Succ(n) \ Processed do

11: WorkList := AppendToList(WorkList, n′);

12: if n ∈ PeelNodes then

13: continue; . Difference computation not required

14: else if HasAffectedVars(n, AffectedVars) then

15: if n ∈ GlueNodes then

16: continue; . Retain the glue loop

17: else if n is a loop-head then

18: L := UncollapseLoopBody(n);

I Function UnCollapseLoopBody restores the collapsed nodes and edges

of each loop.

19: for each node n′ ∈ Nodes(L) do

20: if HasAffectedVars(n′, AffectedVars) then

21: µ′(n′) := NodeDiff(n′, µ,AffectedVars);

22: else

23: ∂PN := RemoveNode(n′, ∂PN); . No affected variables at node n′

24: else
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25: µ′(n) := NodeDiff(n, µ,AffectedVars);

26: else . No affected variables at node n

27: CondNodes := Set of all branch nodes with a peeled node in its scope;

28: if n 6∈ CondNodes then

29: ∂PN := RemoveNode(n, ∂PN);

30: return ∂PN ;

HasAffectedVars( n: node, AffectedVars: set of affected variables )

1: if ∃vA such that vA ∈ def (n) and vA ∈ AffectedVars then

2: return True;

3: else

4: return False;

NodeDiff( n: node, µ: node labeling function, AffectedVars: set of affected variables )

1: if µ(n) is of the form wN := r1N op r2N then

2: return wN := wN−1 ◦ (r1N ◦ (r1N−1)
−◦) ◦ (r2N ◦ (r2N−1)

−◦); . Refer Lemma 6.2

3: else if µ(n) is of the form wN := wN op r1N wherein wN is a scalar then

4: return wN := wN ◦ (r1N ◦ (r1N−1)
−◦); . Refer Lemma 6.3

5: else . µ(n) is a conditional statement CN

6: if (∃v s.t. v ∈ uses(n) and v ∈ AffectedVars) ∨ (CN 6= CN−1 is satisfiable) then

7: throw “Branch conditions in PN and PN−1 may not evaluate to same value”;

8: else

9: return µ(n);

For nodes n that refer to an affected variable/array, we do the following. We check

if a node n is a glue node that refers to an affected variable/array in line 16 and retain

such nodes as is in the difference program. Otherwise, we check if the node n corresponds

to a loop-head in line 17. We uncollapse the nodes corresponding to a loop-head that

represent the entire loop in line 18. We assume that the sub-routine Nodes(L) returns

the set of CFG nodes in loop L. Next, the loop in lines 19–23 iterates over all nodes n′ in

the body of L and process one node at a time. In line 20, we check if the variable/array

updated at node n′ is affected using function HasAffectedVars, and compute its
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rectified value in line 21, using the function NodeDiff. If the variable/array defined at

n′ is not identified as affected, then we remove from ∂PN nodes n′ that do not update

an affected variable/array using the routine RemoveNode in line 23. For a non-peeled

node n that does not correspond to a loop-head, we compute the rectified value of an

affected variable/array defined at n in line 25, using the function NodeDiff.

For nodes n that are not peeled nodes and do not update an affected variable/array,

we do the following. We compute the set CondNodes of conditional branch nodes that

have at least one peeled node within its scope in line 27. In line 29, we remove from ∂PN

nodes n (including collapsed loop nodes) that do not update an affected variable/array

and are not in the set CondNodes, using the routine RemoveNode, as they do not need

any rectification.

The sub-routine NodeDiff computes the statements that rectify values of vari-

ables/arrays updated at a node. It determines the type of statement (assignment, ag-

gregation or branch condition) at the given node and acts accordingly. For assignment

statements, we compute the rectified value as shown in Lemma 6.2 and for aggregating

statements, we compute the rectified value as shown in Lemma 6.3. For the nodes repre-

senting a conditional branch in ∂PN , we determine if its conditional expression evaluates

to the same value in PN and PN−1. If so, the conditional branch is retained as is in ∂PN .

Otherwise, currently our technique cannot compute ∂PN and we report a failure using

the throw statement.

To explain the intuition behind the steps of Algorithm 11, we use the convention

that all variables and arrays of PN−1 have the suffix Nm1 (for N-minus-1), while those

of PN have the suffix N. This allows us to express variables/arrays of PN in terms of

the corresponding variables/arrays of PN−1 in a systematic way in ∂PN , given that the

intended composition is PN−1; ∂PN .

For assignment statements, we compute the rectified values as follows. For every

assignment statement of the form v = E; in L, a corresponding statement is generated in

∂PN that expresses v N in terms of v Nm1 and the difference (or ratio) between versions

of variables/arrays that appear as sub-expressions in E in PN−1 and PN .

While the implementation is currently restricted to simple arithmetic operators

(+,−,×,÷), specifically for the ease of implementation and its use in practice, as previ-

ously stated, our rectification method is general and applies to several operators beyond
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the ones mentioned here. The following example shows the computation of rectified values

of variables/arrays updated in simple program statements.

Example 6.1 The statement A N[i] = B N[i] + v N; in PN gives rise to the statement

A N[i] = A Nm1[i] + (B N[i] + (- B Nm1[i])) + (v N + (- v Nm1)); in ∂PN that

rectifies the value of A N[i]. Similarly, the statement A N[i] = B N[i] * v N; in PN

gives rise to the statement A N[i] = A Nm1[i] * (B N[i] * (1/B Nm1[i])) * (v N *

(1/v Nm1)); under the assumption B Nm1[i] * v Nm1 6= 0. �

The program PN may have statements that aggregate/accumulate values in scalars.

This kind of statement requires special processing when generating the difference program

∂PN . The next example shows the computation of rectified values of variables/arrays in

statements that accumulate values in scalar variables.

Example 6.2 Consider the loop for(i=0; i<N; i++) { sum N = sum N + A N[i]; }

in program PN . The difference A N[i] + (- A Nm1[i]) is aggregated over all indices

from 0 through N − 2. In this case, the loop in ∂PN that rectifies the value of sum N

has the following form: sum N = sum Nm1; for (i=0; i<N-1; i++) { sum N = sum N

+ (A N[i] + (- A Nm1[i])); }. A similar aggregation for multiplicative ratios can also

be shown. �

Conditional branch statements pose a considerable challenge to the computation of

difference programs. A branch condition may evaluate to different outcomes in PN and

PN−1, for the same value of N . When this happens, programs PN and PN−1 execute

totally unrelated blocks of statements. In such situations, it is immensely difficult to

rectify the values of variables/arrays computed along the unrelated branches, and hence,

our algorithm avoids doing so. Only when we can determine that the condition evaluates

to the same value in PN and PN−1, we rectify values of variables/arrays computed along

the corresponding branches. Next we present examples with branch conditions to highlight

this.

Example 6.3 Consider the conditional branch statement if(t3 == 0) (as shown in

line 10 of Fig. 5.1 in Chapter 5). The branch condition evaluates to the same value in

PN and PN−1 because the condition has no dependence on N . Therefore, the branch

statement is used as is during the computation of the difference program. However, recall
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that since the arrays accessed in the program are not affected, none of the loops are

retained in the difference program (shown in Fig. 5.3).

Consider another conditional branch statement if(A[i] == N) in PN . The corre-

sponding statement in PN−1 is if(A[i] == N-1). Clearly, the conditions in these state-

ments do not evaluate to the same value in PN and PN−1. Thus, our algorithm flags a

failure to compute the difference program and terminates. �

x = N;

y = N;

for(i=0; i<N; i++) {

if(x == y)

A[i] = i;

}

(a)

x = N-1;

y = N-1;

for(i=0; i<N-1; i++) {

if(x == y)

A[i] = i;

}

(b)

Figure 6.7: Example Program (a) PN and (b) PN−1

There are programs where conditional branch statements with dependence on N

evaluate to the same value. For example, consider the program PN in Fig. 6.7(a). The

program PN−1 is shown in Fig. 6.7(b). While the branch condition (indirectly) depends

on the value of N , it evaluates to the same value in PN and PN−1, since the amount

of change in the value of variables x and y used in the branch condition is same. Our

algorithm can successfully compute the difference program in such cases.

The restriction on branch conditions that use affected variables/arrays can be further

relaxed by handling the case when the condition evaluates to True in PN−1 and to False

in PN by restoring the values of variables/arrays to their values at the predecessor of the

branch node. However, when a branch condition evaluates to False in PN−1 and to True in

PN , the entire computation within the branch has to be performed again in ∂PN instead

of just executing the rectification code. For example, consider the branch statement,

if(i < N) Loop;. If the branch condition i < N-1 in PN−1 evaluates to False, then

the condition i < N in PN definitely evaluates to True. This will require the difference

program to execute the entire computation performed by the code fragment Loop; and

not just the difference program corresponding to Loop;. This will hamper the progress
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guarantees on the class of programs that our technique can verify. Hence, we currently

avoid handling these cases in the algorithms and consider them as a part of future work.

We now prove the soundness of the routine ProgramDiff from Algorithm 11.

For the following lemma, we assume that ∂PN is the difference program computed when

function ProgramDiff is invoked on the renamed program PN . Suppose both PpN and

PN−1; ∂PN are executed from the same initial state σ. We assume π : (n0, n1, . . . , nk) to

be the path in the CFG of ∂PN corresponding to the execution of the difference program

from the state obtained after PN−1 has terminated (in PN−1; ∂PN). We assume π′ :

(n′0, n
′
1, . . . , n

′
k) to be the corresponding path in the CFG of the peeled program PpN .

Lemma 6.4 For every node nj in π, the rectified values of all variables/array elements

used at nj during the execution of ∂PN are identical to the values of the same vari-

ables/array elements at the corresponding node n′j during the execution of PpN .

Proof. If vA is not identified as an affected variable/array by function ComputeAf-

fected, the result follows from the proof of Lemma 5.17 and the no-overwriting property

of renaming.

If vA is identified as an affected variable, we induct on the length of π. The only

difference in this case is that we also need to consider the assignment statements modified

by function NodeDiff at lines 21 and 25 of function ProgramDiff. Lemmas 6.1, 6.2

and 6.3 guarantee the correctness of the rectified value of vA computed by these additional

statements, given the unrectified value of vA and rectified and unrectified values of all

variables and array elements used in the right hand side of the assignment. By the

inductive hypothesis, the rectified values of the latter set of variables and array elements

are indeed available. By the no-overwriting property, the unrectified values of vA and all

other variables and arrays used in the right hand side of the assignment are also available.

Therefore, the correct rectified value of vA is computed at each node in π.

Finally, note that once a rectified value is generated at a non-glue node in the differ-

ence program, renaming ensures that it is not re-defined by subsequent statements in the

difference program. Therefore, rectified values, once computed in the difference program,

are available for use at subsequent nodes in the execution path. Putting the above parts

together completes the proof. �
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Theorem 6.1 ∂PN generated by ProgramDiff is such that, for all N > 1, {ϕ(N)}

PN−1; ∂PN {ψ(N)} holds iff {ϕ(N)} PN {ψ(N)} holds.

Proof. Lemma 5.6 guarantees that {ϕ(N)} PN {ψ(N)} holds iff {ϕ(N)} PpN {ψ(N)}

holds. Furthermore, Lemma 6.4 ensures that for every state σ satisfying ϕ(N), if we

execute PpN and PN−1; ∂PN starting from σ, then if the final state after termination of

PpN satisfies ψ(N), so does the final state after termination of PN−1; ∂PN . This proves

the theorem. �

// assume(∀i∈[0,N) A[i] = 1)

1. S = 0;

2. for(i=0; i<N-1; i++) {

3. S = S + A[i];

4. }

5. S = S + A[N-1];

6. for(i=0; i<N-1; i++) {

7. A1[i] = A[i] + S;

8. }

9. A1[N-1] = A[N-1] + S;

10. S1 = S;

11. for(i=0; i<N-1; i++) {

12. S1 = S1 + A1[i];

13. }

14. S1 = S1 + A1[N-1];

// assert(S1 = N × (N+2))

(a)

// assume(∀i∈[0,N) A[i] = 1)

1. S = S_Nm1 + A[N-1];

2. for(i=0; i<N-1; i++) {

3. A1[i] = A1_Nm1[i] + (S - S_Nm1);

4. }

5. A1[N-1] = A[N-1] + S;

6. S1 = S1_Nm1 + (S - S_Nm1);

7. for(i=0; i<N-1; i++) {

8. S1 = S1 + (A1[i] - A1_Nm1[i]);

9. }

10. S1 = S1 + A1[N-1];

// assert(S1 = N × (N+2))

(b)

Figure 6.8: (a) Peeled Program and (b) Difference Program
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Example 6.4 We illustrate the difference computation performed by the routine Pro-

gramDiff in Algorithm 11 on the peeled program shown in Fig. 6.8(a) (replicated from

Fig. 5.15 of Section 5.3.2 in Chapter 5). Fig. 6.8(b) shows the difference program ob-

tained after executing the algorithm on the peeled program. Notice that while some

program statements in Fig. 6.8(b) are syntactically similar to corresponding statements

in Fig. 6.8(a), the additional statements (e.g. at lines 3, 6 and 8) in Fig. 6.8(b) have no

syntactic counterpart in Fig. 6.8(a). For the first loop, since variable S is not affected,

only the peeled iteration is retained. Since A1 and S1 both are affected, the statements

within the second and the third loop are replaced with difference statements that rectify

their values, along with inserting the peeled statements for both loops. Initialization of

variable S1 is also replaced with its difference statement since it depends on variable S.�

6.2.2 Simplifying the Difference Program

While we have described a simple strategy to generate a difference program ∂PN above,

this may lead to unoptimized as well as redundant statements in the naively generated dif-

ference program. Our implementation aggressively optimizes ∂PN and removes redundant

code, renaming variables/arrays as needed. The routine SimplifyDiff in Algorithm 12

simplifies program statements that compute rectified values, removes redundant loops

from the difference program and substitutes loops with the summarized statements com-

puted using acceleration. This helps in ∂PN having fewer and simpler loops in a lot of

cases. Below, we describe these optimizations and illustrate them using examples.

Since the generation of statements that compute rectified values is not fully opti-

mized, these statements may have expressions that can be further simplified using the

values computed in other statements in the generated difference program ∂PN . The func-

tion Simplify performs this optimization aggressively and simplifies the statements in

the difference program (lines 3–4 in Algorithm 12). Let us take an example to illustrate

the effect of the Simplify function.

Example 6.5 Suppose the difference program ∂PN has statements of the form B N[i]

= B Nm1[i] + expr1; and v N = expr2*v Nm1;. If expr1 and expr2 are constants or

functions of N and loop counters, then expressions such as (B N[i] - B Nm1[i]) and

(v N/v Nm1) can often be simplified from the statements in the difference program. The
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Algorithm 12 SimplifyDiff((Locs , CE, µ): difference program ∂PN)

1: ∂P′N := (Locs′, CE ′, µ′), where Locs′ := Locs, CE ′ := CE, and µ′ := µ;

2: for each loop L ∈ Loops(∂P′N) do

3: for each node m ∈ Nodes(L) do

4: µ′(m) := Simplify(µ′(m)); . Simplify the statement

5: (n1, n, c) := IncomingEdge(L); . c is the label of the edge from n1 to n

6: (n, n2,ff) := ExitEdge(L);

7: if body of L is of the form wN := wN op expr, wherein wN is a scalar variable

then

8: nacc = FreshNode();

9: if op ∈ {+,−} then

10: µ′(nacc) := (wN := wN op Simplify(kL(N − 1)× expr)); . Accelerated

statement

11: else if op ∈ {×,÷} then

12: µ′(nacc) := (wN := wN op Simplify(exprkL(N−1))); . Accelerated

statement

13: else

14: throw “Specified operator not handled”;

15: CE ′ := CE ′ ∪ {(n1, nacc, c), (nacc, n2,U)} \ {(n1, n, c), (n, n2,ff)};

16: Locs′ := Locs′ ∪ {nacc} \ Nodes(L);

17: if body of L is of the form wN := wN−1 or wN := wN then . Remove redundant

loops

18: CE ′ := CE ′ ∪ {(n1, n2, c)} \ {(n1, n, c), (n, n2,ff)};

19: Locs′ := Locs′ \ Nodes(L);

20: return ∂P′N ;

expression expr1 is substituted for B N[i] - B Nm1[i] and expr2 for v N/v Nm1 respec-

tively. �

The difference program ∂PN may contain loops that perform redundant computation,

for example, copying values across versions of an array corresponding to PN and PN−1, due

to the simplification of the statements that compute its rectified value. We remove such
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loops from ∂PN in lines 17–19 of Algorithm 12. Let us illustrate this with an example.

Example 6.6 Suppose the difference program ∂PN has the loop for(i=0; i<N-1; i++)

{ A N[i] = A Nm1[i]; } where A N is not used subsequently in the program. Such loops

can be removed from the difference program, as these loops only copy values from the

version of array A in PN−1 to its version in PN , and hence, are redundant. �

The difference program ∂PN may also contain loops that compute values of variables

that can be accelerated. We perform this optimization in lines 7–16 of SimplifyDiff in

Algorithm 12. We first check if the body of a loop L is in the specific form eligible for

this optimization in line 7. If so, we create a fresh node in line 8 to replace L. Lines 9–14

of Algorithm 12 label the fresh node with the accelerated statement. If we encounter

operators that are not supported, then we report a failure of our technique using the

throw statement in line 14. Next, we replace the loop with the fresh node in lines 15–16.

We demonstrate this optimization with the following example.

Example 6.7 Suppose the difference program has the loop for(i=0; i<N-1; i++) {

sum = sum + 1; }. The semantics of the loop can be summarized using the accelerated

statement sum = sum + (N-1);. SimplifyDiff removes this loop from the program and

introduces the accelerated statement instead. �

In the following lemma, we use ∂P′N to denote the program generated by Simplify-

Diff.

Lemma 6.5 {ϕ(N)} PN−1; ∂P′N {ψ(N)} holds iff {ϕ(N)} PN−1; ∂PN {ψ(N)} holds.

Proof. Follows trivially from the fact that SimplifyDiff in Algorithm 12 optimizes

program statements, removes only redundant statements/loops, and replaces loops using

semantically equivalent accelerated statements. �

Example 6.8 We illustrate the application of the simplification routine SimplifyDiff

from Algorithm 12 on our running example. The program in Fig. 6.9 is obtained after

simplification of ∂PN in Fig. 6.8. The difference terms are replaced with the simplified

expressions from the difference program itself. Notice that the loop that rectifies the value

of S1 is accelerated and the statement obtained after this optimization is shown in line

7. �
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// assume(∀i∈[0,N) A[i] = 1)

1. S = S_Nm1 + A[N-1];

2. for(i=0; i<N-1; i++) {

3. A1[i] = A1_Nm1[i] + 1;

4. }

5. A1[N-1] = A[N-1] + S;

6. S1 = S1_Nm1 + A[N-1];

7. S1 = S1 + (N-1);

8. S1 = S1 + A1[N-1];

// assert(S1 = N × (N+2))

Figure 6.9: Simplified Difference Program

6.3 Extensions to Full-Program Induction

In this section, we discuss two different versions of the full-program induction algorithm

that expand its capabilities beyond the base version FPIVerify-Basic presented in

Section 5.6.2 of Chapter 5.

6.3.1 The Recursive Full-program Induction Algorithm

The full-program induction algorithm presented as routine FPIVerify in Algorithm 13

is an extended version of Algorithm 10 from Section 5.6.2. The important steps of the

algorithm include checking conditions 3(a), 3(b) and 3(c) of Theorem 5.1 (lines 1, 23

and 12), calculating the weakest pre-condition of the relevant part of the post-condition

(line 15), recursively invoking our routine FPIVerify with the strengthened pre- and

post-conditions (line 18), and accumulating the the weakest pre-condition predicates thus

calculated for strengthening the pre- and post-conditions (line 22). We now discuss the

algorithm in detail.

We first check the base case of the analysis in line 1. The base case of our induction
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Algorithm 13 FPIVerify(PN : program, ϕ(N): pre-condition, ψ(N): post-condition)

1: if Base case check {ϕ(1)} P1 {ψ(1)} fails then

2: print “Counterexample found!”;

3: return False;

4: 〈PN , ϕ(N), ψ(N),GlueNodes〉 := Rename(PN , ϕ(N), ψ(N)); . Renaming as

described in Section 5.3.1

5: ∂ϕ(N) := SyntacticDiff(ϕ(N));

6: ∂PN := ProgramDiff(PN , GlueNodes);

7: ∂PN := SimplifyDiff(∂PN); . Simplify and Accelerate loops

8: i := 0;

9: Prei(N) := ψ(N);

10: c Prei(N) := True; . Cumulative conjoined pre-condition

11: do

12: if {c Prei(N − 1) ∧ ψ(N − 1) ∧ ∂ϕ(N)} ∂PN {c Prei(N) ∧ ψ(N)} then

13: return True; . Assertion verified

14: i := i+ 1;

15: Prei(N − 1) := LoopFreeWP(Prei−1(N), ∂PN); . Dijkstra’s WP sans

WP-for-loops

16: if no new Prei(N − 1) obtained then . Can happen if ∂PN has a loop

17: if CheckProgress(PN , ∂PN) then

18: return FPIVerify(∂PN , c Prei−1(N−1)∧ψ(N−1)∧∂ϕ(N), c Prei−1(N)∧

ψ(N));

19: else

20: return False; . Failed to prove by full-program induction

21: else

22: c Prei(N) := c Prei−1(N) ∧ Prei(N);

23: while Base case check {ϕ(1)} P1 {c Prei(1)} passes;

24: return False; . Failed to prove by full-program induction

reduces to checking a Hoare triple for a loop-free program, as previously explained (in

Section 5.2). This is achieved by compiling the pre-condition, the program and the post-
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condition into a first-order logic formula. The validity of this formula can be checked

using an off-the-shelf back-end SMT solver, such as Z3. If the check fails, we have found

a valid counter-example and the algorithm terminates in line 3 after reporting the result

to the user.

Next, we rename the variables and arrays in the program PN as well as the pre- and

post-conditions (using Algorithm 3 described in Section 5.3.1) and collect the set of glue

nodes (line 4). Then, in line 5, we compute the difference pre-condition ∂ϕ(N) using

the function SyntacticDiff (described in Section 5.5). We then compute the difference

program ∂PN in line 6 using the function ProgramDiff from Section 6.2. Note that

this function can compute the difference program when the scalar variables and arrays

of interest are identified as affected (refer Section 5.3.4 from Chapter 5 for our method

of identifying affected variables). In line 7, we simplify the statements in the computed

difference program, remove redundant statements and try to accelerate loops, if any, using

the routine SimplifyDiff from Algorithm 12.

Unlike the base version of the algorithm, the loop in lines 11–23, that iteratively

checks if the assertion can be proved, has a recursive invocation in line 18. Once the

base case succeeds, we check the inductive step in line 12. If the loop terminates via the

return statement in line 13, the inductive claim has been successfully proved. Otherwise,

in line 15, we compute Dijkstra’s weakest pre-condition of the formula Prei(N), over the

difference program. The formula Prei(N) is initialized to ψ(N) in line 9. We denote

the computed weakest pre-condition as Prei(N − 1). Note that, the formula Prei(N − 1)

strengthens the pre-condition and the same formula Prei(N), but with N substituted for

N − 1, strengthens the post-condition. The variable c Prei(N − 1), initialized to True in

line 10, accumulates weakest pre-condition formulas in each loop iteration (line 22).

In case no further weakest pre-conditions can be generated, as checked in line 16, we

recursively invoke FPIVerify on ∂PN in line 18. Prior to recursive invocation, we check

if it will be beneficial using function CheckProgress, in line 17. Discussion about the

routine CheckProgress is deferred to Section 6.4. The recursive invocation helps in

situations where the computed difference program ∂PN has loops. To present an example

of this scenario, we modify the program in Fig. 5.1 by having the statement C[t3] = N;

(instead of C[t3] = 0;) in line 10. In this case, ∂PN retains a loop that rectifies the value

of C[t3] corresponding to its computation in the third loop in Fig. 5.1. The recursive
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invocation of full-program induction on ∂PN as input for the mentioned example results

in a loop-free difference program. If the check at line 17 reports that further application

of full-program induction will not yield any benefits then we report the failure of our

technique in line 20.

When weakest pre-condition computation succeeds, we conjoin the computed strength-

ening predicate Prei(N) with the variable c Prei−1(N) in line 22. Since the weakest pre-

condition (Prei(N − 1) in line 15) computed in every iteration of the loop is conjoined to

strengthen the inductive pre-condition (c Prei(N − 1) in line 22), it suffices to compute

the weakest pre-condition of Prei−1(N) (instead of c Prei(N) ∧ ψ(N)) in line 15. Possi-

bly multiple iterations of the loop in lines 11–23 are required to strengthen the pre- and

post-conditions. After each iteration, the base case is checked again in line 23 with the

strengthened pre- and post-conditions. If the loop terminates due to violation of the base-

case with the strengthened post-condition (line 23), we report the failure of our method

by returning False in line 24.

Lemma 6.6 Upon successful termination, if function FPIVerify returns True, then

{ϕN} PN {ψN} holds for all N ≥ 1.

Proof. Verifying the given Hoare triple requires establishing the conditions mentioned in

Theorem 5.1. The function Rename in line 4 preserves the semantics of the program (refer

Lemma 5.2). The functions ProgramDiff invoked at line 6 and SimplifyDiff invoked

at line 7 ensure condition 1 of Theorem 5.1 (refer Theorem 6.1 and Lemma 6.5). The

call to SyntacticDiff in line 5 in FPIVerify computes the difference pre-conditions

that satisfy conditions 2(a) and 2(b) (refer Lemma 5.18). The conditions 3(a) and 3(b)

of Theorem 5.1 are checked in lines 1 and 23 respectively. The check in line 12 ensures

that the return statement in line 13 executes only when condition 3(c) of Theorem 5.1

is ensured. Similarly, the statement in line 18 returns True only if the recursive call to

FPIVerify proves all conditions in Theorem 5.1. Hence, we conclude that {ϕN} PN

{ψN} holds for all N ≥ 1. �

Example 6.9 We execute function FPIVerify on the example, shown in Fig. 6.3(b).

The algorithm first checks the base-case by instantiating N with value 1 as shown in

the Hoare triple from Fig. 6.10(a). Then the scalar and array variables are renamed
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// assume(∀i∈[0,1) A[i] = 1)

1. S = 0;

2. for(i=0; i<1; i++) {

3. S = S + A[i];

4. }

5. for(i=0; i<1; i++) {

6. A[i] = A[i] + S;

7. }

8. for(i=0; i<1; i++) {

9. S = S + A[i];

10. }

// assert(S = 3)

(a)

// assume(A[N-1] = 1) //∂ϕ(N)

// assume(S1_Nm1 = (N-1)×(N+1)) //ψ(N-1)

// assume(∀i∈[0,N-1) A1_Nm1[i] = N)

// assume(S_Nm1 = N-1)

1. S = S_Nm1 + A[N-1];

2. for(i=0; i<N-1; i++) {

3. A1[i] = A1_Nm1[i] + 1;

4. }

5. A1[N-1] = A[N-1] + S;

6. S1 = S1_Nm1 + A[N-1];

7. S1 = S1 + (N-1);

8. S1 = S1 + A1[N-1];

// assert(S1 = N×(N+2)) //ψ(N)

// assert(∀i∈[0,N) A1[i] = N+1)

// assert(S = N)

(b)

Figure 6.10: (a) Base-case (b) Inductive Step with Strengthening of Pre- and Post-conditions

using function Rename (described in Algorithm 3 from Section 5.3.1). We then compute

the difference pre-condition using function SyntacticDiff in Algorithm 9 on the given

pre-condition ϕ(N) := ∀i ∈ [0, N) A[i] = 1. The difference pre-condition computed as

∂ϕ(N) := A[N−1] = 1 is shown in Fig. 6.10(b) using an assume statement. The difference

program computed using the function ProgramDiff as shown in Fig. 6.8 is further

simplified using the routine SimplifyDiff as shown in Fig. 6.9. The simplified difference

program is used in the inductive step as shown in Fig. 6.10(b). The algorithm then

checks the inductive step after assuming the post-condition ψ(N − 1) from the inductive

hypothesis. We use a back-end SMT solver to check the satisfiability of the inductive step.

The check does not immediately succeed, indicating that we need a stronger pre-condition.
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The algorithm then employs Dijkstra’s weakest pre-condition computation (described

in Section 5.6.1) to strengthen the pre- and post-conditions simultaneously. The first

application of weakest pre-condition computation generates pre-condition on array A1 as

the formula A1[N − 1] = N + 1. This is naturally lifted to its quantified form ∀i ∈ [0, N)

A1[i] = N + 1 and used to simultaneously strengthen the post-condition. We substitute

N with N − 1 and rename the array to get the formula ∀i ∈ [0, N) A1 Nm1[i] = N ,

which is used to strengthen the pre-condition. The algorithm again checks the base-

case which succeeds but is unable to establish the inductive step of the analysis. We

re-apply the weakest pre-condition computation and generate the predicates S = N and

S Nm1 = N − 1 that further strengthen the pre- and post-conditions. At this point

the base-case and the inductive step succeed proving the given post-condition using full-

program induction. The Hoare triple in Fig. 6.10(b) shows the difference pre-condition

∂ϕ(N), post-condition ψ(N), formula ψ(N − 1) from the induction hypothesis as well as

the strengthened pre- and post-condition formulas. �

6.3.2 Full-Program Induction with Formula Decomposition

While the algorithm FPIVerify suffices for all of our experiments, it may not always

be the case. Specifically, even if ∂PN is loop-free, the analysis may exit the loop in

lines 11–23 of FPIVerify by violating the base case check in line 23. To handle (at least

partly) such cases, we propose the following strategy. Whenever a (weakest) pre-condition

Prei(N − 1) is generated, instead of using it directly to strengthen the current pre- and

post-conditions, we “decompose” it into two formulas Pre′i(N − 1) and ∂ϕ′i(N) with a

two-fold intent: (a) potentially weaken Prei(N − 1) to Pre′i(N − 1), and (b) potentially

strengthen the difference formula ∂ϕ(N) to ∂ϕ′i(N)∧∂ϕ(N). The checks for these intended

usages of Pre′i(N − 1) and ∂ϕ′i(N) are implemented in lines 3, 4, 5, 11 and 16 of routine

FPIDecomposeVerify, shown as Algorithm 14. This routine is meant to be invoked

as FPIDecomposeVerify(i) after each iteration of the loop in lines 11–23 of routine

FPIVerify (so that Prei(N), c Prei(N) etc. are initialized properly). In general, several

“decompositions” of Prei(N) may be possible, and some of them may work better than

others. FPIDecompseVerify permits multiple decompositions to be tried through the

use of the functions NextDecomposition and HasNextDecomposition. The names

of both these functions intuitively indicates their meaning. Lines 19–22 of FPIDecom-
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Algorithm 14 FPIDecomposeVerify( i : integer )

1: do

2: 〈Pre′i(N − 1), ∂ϕ′i(N)〉 := NextDecomposition(Prei(N − 1));

3: Check if (a) ∂ϕ′i(N) ∧ Pre′i(N − 1)⇒ Prei(N − 1),

4: (b) ϕ(N)⇒ ϕ(N − 1)� (∂ϕ′i(N) ∧ ∂ϕ(N)), . where � ∈ {∧,∨}

5: (c) PN−1 does not update any variable or array element in ∂ϕ′i(N)

6: if any check in lines 3 - 5 fails then

7: if HasNextDecomposition(Prei(N − 1)) then

8: continue;

9: else

10: return False;

11: if {c Prei−1(N−1)∧ψ(N−1)∧Prei(N−1)∧∂ϕ(N)} ∂PN {c Prei−1(N)∧ψ(N)∧

Pre′i(N)} then

12: return True; . Assertion verified

13: else

14: c Prei(N) := c Prei−1(N) ∧ Pre′i(N);

15: Prei+1(N − 1) := LoopFreeWP(Pre′i(N), ∂PN); . Dijkstra’s WP sans

WP-for-loops

16: if {ϕ(1)} P1 {c Prei(1) ∧ Prei+1(1)} holds then

17: prev ∂ϕ(N) := ∂ϕ(N);

18: ∂ϕ(N) := ∂ϕ′i(N) ∧ ∂ϕ(N);

19: if FPIDecomposeVerify(i+ 1) then . Recursive invocation

20: return True; . Assertion verified

21: else

22: ∂ϕ(N) := prev ∂ϕ(N);

23: i := i+ 1;

24: while HasNextDecomposition(Prei(N − 1));

25: return False; . Failed to prove by full-program induction

poseVerify implement a simple back-tracking strategy, allowing a search of the space

of decompositions of Prei(N − 1). Observe that when we use FPIDecomposeVerify,

we simultaneously compute a difference formula (∂ϕ′i(N)∧ ∂ϕ(N)) and an inductive pre-
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condition (c Prei−1(N) ∧ Pre′i(N)).

Lemma 6.7 Upon successful termination, if function FPIDecomposeVerify returns

True, then {ϕN} PN {ψN} holds for all N ≥ 1.

Proof. The conditions mentioned in Theorem 5.1 are a pre-requisite to verifying the given

Hoare triple. Condition 1 of Theorem 5.1 is ensured by difference computation (functions

ProgramDiff and SimplifyDiff) in FPIVerify. Conditions 2(a) and 2(b) are estab-

lished in FPIVerify (via the call to function SyntacticDiff) and the checks on lines

3–5 in FPIDecomposeVerify ensure that these conditions continue to hold. Further,

FPIVerify also ensures conditions 3(a) and 3(b) before it invokes FPIDecomposeV-

erify. Now, the check in line 11 in FPIDecomposeVerify ensures condition 3(c) of

Theorem 5.1. Similarly, the statement in line 20 in FPIDecomposeVerify returns True

only if the recursive call to FPIDecomposeVerify proves all the conditions in Theorem

5.1. Hence, we conclude that {ϕN} PN {ψN} holds for all N ≥ 1. �

6.4 Checking Progress

Recall from Section 6.3.1 that given the parameterized Hoare triple {ϕ(N)} PN {ψ(N)},

our technique recursively computes difference programs until the given post-condition

ψ(N) is proved. The difference computation must eventually result in programs ∂PN that

can be easily verified without the need of further applying inductive reasoning or indicate

otherwise. In this section, we define a progress measure that can be used to check if the

difference computation will eventually simplify the program to the extent that it can be

verified using a back-end SMT solver. The measure is based on the characteristics of the

difference programs computed by our technique.

Ranking functions have been traditionally used to show program termination [DGG00,

CS01, CS02, PR04]. We use the notion of ranking functions to measure the progress that

our technique has made towards verifying the given post-condition using the difference

programs. Several different criteria have been used in the literature to define ranking

functions. Our ranking function links with each difference program a value from a well-

founded domain. We assign the minimal rank to programs that can be effectively verified,

for example using a back-end SMT solver. A difference program gets a smaller rank com-

pared to another difference program if it is “closer” (in a natural way) to programs that
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can be proved. Here, we list some criteria that can be used for defining the ranking func-

tion for our technique based on the syntactic changes in difference programs vis-a-vis the

given program.

The main hurdle in proving the given Hoare Triple, {ϕ(N)} PN {ψ(N)}, are

the loops in the given program PN . Once the difference program is loop-free, the post-

condition in such programs can be easily verified by an SMT solver and our technique is

no longer required to recursively apply induction any further for proving such programs.

Thus, the difference programs for which our technique terminates are loop-free programs

and programs in which loops can be accelerated or optimized away with known techniques.

Hence, reduction in the number of loops in the difference program ∂PN vis-a-vis the given

program PN is the main criterion to measure progress in our technique.

Further, the difference computation can potentially reduce the dependence on the

value of N . For programs with expressions that do not directly or indirectly 1 rely on

N , the difference program consists of only the peeled iterations of loops. Clearly, when

the difference program ∂PN is impervious to the value of N , additional code to rectify

the values of variables is no longer required in the subsequent recursive invocations. This

indicates that we have made progress. We thus use the presence of variables in the program

whose value directly or indirectly depends on the value of N as another criteria to measure

progress. As previously stated in Section 5.3.4, if the value of a variable/array depends

on N or on a value computed in a peeled statement, then we call such variables/arrays as

affected variables/arrays. Our technique computes the set of affected variables during each

recursive attempt to verify the post-condition. The difference program must rectify the

values of these affected variables/arrays. When the difference program has no affected

variables, the verification attempt can be terminated after the next invocation of our

technique.

We also consider the complexity of expressions in the program and use it as a criteria

for measuring progress. For every expression appearing in assignment statements, its

expression complexity can be defined in many possible ways. Once this complexity is

defined for expressions, we can take the maximum complexity of all the expressions as the

expression complexity of the entire program. For programs with polynomial expressions,

1By indirect dependence, we mean the dependence via another value computed in a peeled or non-

peeled statements in the program.
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we can use the highest degree of the affected variables/arrays in the expression as the

expression complexity. Similarly, several other criteria can be used to define the expression

complexity. These include nesting levels of array indices, size/weight of the expression

trees in ∂PN vis-a-vis PN , number of variables, operators and constants in the expressions

and so on. It is worth pointing out that such notions have been previously studied in

term rewriting systems [Der82, Les82].

Note that each criterion discussed so far, including the number of loops, the number

of affected variables and the expression complexity, is well-founded. Hence, the domain

of values represented by their Cartesian product is also well-founded and represents a

lexicographic ordering on the difference programs computed by our method. Progress is

guaranteed if each recursive invocation of our technique in the cycle reduces this measure

assigned by such a ranking function. We argue that the cycle of recursive invocations

to our technique must eventually terminate, as there are no infinite descending chains of

elements in the well-founded domain. We present an algorithm that can compute values

from this domain on the fly and return the result of the comparison between the computed

quantities. Note that no user intervention is required for checking progress.

Algorithm 15 CheckProgress(PN : program, ∂PN : difference program)

1: LoopList := Loops(PN);

2: LoopList′ := Loops(∂PN);

3: if #LoopList′ < #LoopList then

4: return True;

5: AffectedVars := ComputeAffected(PN);

6: AffectedVars′ := ComputeAffected(∂PN);

7: if #AffectedVars′ < #AffectedVars then

8: return True;

9: EC := ExpressionComplexity(PN);

10: EC′ := ExpressionComplexity(∂PN);

11: if EC′ < EC then

12: return True;

13: return False;

The routine CheckProgress in Algorithm 15 is used for checking progress after the
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difference program is computed. The algorithm is based on the change in the number of

loops, number of affected variables and the expression complexity of the given program PN

vis-a-vis the difference program ∂PN . First, we compute the number of loops in programs

PN and ∂PN . We compare the number of loops in PN and ∂PN in line 3. If the difference

program has fewer loops than PN , then we return True concluding that the ∂PN is simpler

to verify than the given program. Note that, we do not consider the glue loops in the

difference program that were introduced during the renaming step to copy values across

versions. If the number of loops does not decrease in an invocation of our technique, we

check if the number of affected variables has decreased. We compute the set of affected

variables in PN and ∂PN using the routine ComputeAffected from Algorithm 6. In

line 7, we compare the number of affected variables in both the programs. The algorithm

returns True if the difference program has fewer affected variables than PN . Subsequently,

we check if the expressions in the difference program ∂PN are “simpler”, and easier to

reason with, than PN . We assume the availability of a routine ExpressionComplexity

that can compute this complexity measure for programs PN and ∂PN . In line 11 we check

if the expression complexity of the difference program ∂PN is less than that of the given

program PN , in which case the algorithm returns True. If none of these criteria are met,

then the algorithm returns False.

Lemma 6.8 If CheckProgress in Algorithm 15 returns True, then the difference pro-

gram ∂PN is “simpler” to verify (using the full-program induction technique) as compared

to the given program PN .

Proof. The difference program ∂PN has strictly less loops than PN when the check in line

3 is satisfied. In this case, verifying ∂PN is simpler than verifying PN . Further, reduction

in the number of affected variables/arrays means less code is retained to rectify their

values. Hence, when the check on line 7 is satisfied, ∂PN is simpler than PN . By Lemma

5.17, when none of the variables/arrays of interest are identified as affected, only the peeled

iterations of loops (referred as Peel(PN)) suffice as the difference program ∂PN . This also

makes verifying ∂PN simpler as compared to PN . Similarly, the last condition ensures

that the expressions in the difference program are easier to reason with than the given

program PN . Further, these characteristics of the program and the ordering among them

as specified by CheckProgress forms a lexicographic ranking function [PR04]. Hence,
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these quantities are bound to reduce with each application of our technique, making the

difference program simpler to verify each time. This concludes the lemma. �

Lemma 6.9 The routine FPIVerify in Algorithm 13 eventually terminates.

Proof. Function FPIVerify presented in Algorithm 13 can execute in infinite recursion

only when the invocation of CheckProgress in line 17 returns True infinitely often.

From difference program computation, we know that the number of loops and affected

variables/arrays in the difference program ∂PN never increase beyond their counts in the

given program PN , they either decrease or remain the same. Further, if the expression

complexity of all the statements that update an affected variable/array does not decrease

then our method returns False, and consequently we report failure. Thus, these three

characteristics with the specified ordering among them form a lexicographic ranking func-

tion [PR04]. Since the value of the lexicographic ranking function strictly decreases in

each recursive application of our method, it ensures that function FPIVerify eventually

terminates. �

6.5 Generalization to Different Problem Settings

For brevity and ease of explanation, we have presented our technique in simple settings.

We have so far considered Hoare triples that have a single parameter N . In this section,

we show how our technique can be adapted to Hoare triples with multiple parameters as

well as peeling loops in different directions for our inductive reasoning. We also state the

limitations of our technique.

Based on the ideas previously described, our technique can already verify several

interesting scenarios in programs. Our technique can verify programs that manipulate

arrays of different sizes as well as loops with non-uniform termination conditions that

are a linear function of N . It does so by computing a (possibly different) peel count for

each loop that manipulates different arrays. For the ease of presentation, our algorithm

computes the rectified values of variables/arrays in statements with a single operator.

When the program statements have two or more operators, such statements can be split

into multiple statements, by introducing temporary variables such that each statement

has a single operator, and then computing the difference program using our algorithm.
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6.5.1 Multiple Independent Program Parameters

Consider proving Hoare triples with multiple parameters N1, N2, ..., Nk. Suppose that

the values of these parameters are independent of each other. Verifying Hoare triples

for all values of these parameters can be done by inducting on one program parameter

at a time while keeping the other parameters fixed. We explain this with the help of

a simple example with two parameters. To prove that the Hoare Triple {ϕ(N1, N2)}

PN1,N2 {ψ(N1, N2)} for all N1 ≥ a ∧ N2 ≥ b, we prove the following three sub-goals.

First, in the base-case we prove that the triple {ϕ(a, b)} Pa,b {ψ(a, b)} holds. Second,

induction over the parameter N1, where we assume the Hoare Triple {ϕ(k,N2)} Pk,N2

{ψ(k,N2)} holds with k ≥ a∧N2 ≥ b, and prove the Hoare Triple {ϕ(k+1, N2)} Pk+1,N2

{ψ(k + 1, N2)}, treating N2 as a symbolic parameter unchanged during the induction.

Third, induction over the parameter N2, where we assume that the Hoare Triple {ϕ(N1, l)}

PN1,l {ψ(N1, l)} holds where N1 ≥ a ∧ l ≥ b, and prove the Hoare Triple {ϕ(N1, l + 1)}

PN1,l+1 {ψ(N1, l+ 1)}, treating N1 as a symbolic parameter unchanged in the induction.

This can be easily extended to Hoare triples with more than two parameters. For programs

that manipulate arrays of different independent sizes, we treat each variable representing

the symbolic size of arrays as a parameter. As described above, our technique verifies

such programs by inducting on each parameter one at a time.

6.5.2 Handling Loops with Increasing/Decreasing Counters

Recall that the difference program ∂PN is sequentially composed with PN−1. Earlier, we

have been peeling the last iterations of the loops in PN so that PN−1 and PN have the same

number of iterations in each loop. However, there are programs where peeling the last

iterations of loops may not be possible such that our technique can compute a difference

program. In such cases, we may need to peel the initial iterations of the loops in the

program. As an example, consider a loop where the value of the loop counter decreases in

each iteration. A possible way is to rotate these loops to fit the template of loops defined

in our grammar and then apply our technique. However, not all loops are such that they

can be rotated easily using the standard loop transformation techniques. For such loops,

we may need to peel it at the beginning. We peel the initial iterations of these loops

and add the code that rectifies values of variables computed in the loop after the peeled
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iterations such that PN−1; ∂PN is semantically equivalent to PN . Thus, by peeling initial

iterations of loops when computing the difference program, our technique can be easily

adapted to programs with such loops in a sound way.

6.5.3 Limitations

There are several scenarios under which the full-program induction technique may not

produce a conclusive result.

Program computation with side-effects may make it difficult to compute the differ-

ence program such that there is a clear separation between the program PN−1 and the rest

of the computation that can make up PN . Computation that results in side-effects includes

I/O operations, allocation, de-allocation and modification of heap memory and other op-

erations that modify the environment which is not local to the given program. When the

given program is not free of such side-effects, our technique may not be able to decom-

pose it into PN−1 and ∂PN . Note that we only disallow the computation that impacts

the post-condition to be proved. In our experience, a large class of array-manipulating

programs are naturally free of side-effects. In particular, the programs discussed in this

chapter (including Fig. 5.1) and those used for experimentation are free of side-effects.

Currently our technique is unable to verify programs with branch conditions that

are dependent on the parameter N . Computing the difference program becomes cumber-

some in such cases. This stems from the fact that the branch condition may evaluate to

different outcomes in PN and PN−1, for the same value of N , and hence, may require us to

compute the difference of two arbitrary pieces of code blocks. We identify such cases while

computing the difference program in Algorithm 11 and suspend our verification attempt

on line 7 of the routine NodeDiff. Note that this does not include the loop conditions,

which are handled by peeling the loop. To illustrate this case, consider the Hoare triple

shown in Fig. 6.11. The first loop in the program initializes array A and the second loop

updates array A within a branch statement with the conditional expression N%2 == 0. It is

easy to see that this branch condition will evaluate to different outcomes in PN and PN−1.

As a result, it is difficult for our technique to compute a difference program. Invariant

generation techniques may be better suited for verifying this example. The weakest loop

invariants needed to prove the post-condition in this example are: ∀j ∈ [0, i) (A[j] = 0)

for the first loop and ∀k ∈ [0, i) (A[k]%2 = N%2) for the second loop.
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// assume(true)

1. for(i=0; i<N; i++) {

2. A[i] = 0;

3. }

5. for(i=0; i<N; i++) {

6. if( N%2 == 0 ) {

7. A[i] = A[i] + 2;

8. } else {

9. A[i] = A[i] + 1;

10. }

11. }

// assert(∀i ∈ [0,N) A[i]%2 = N%2)

Figure 6.11: Challenge Example

The difference program includes all peeled iterations of PN that are missed in PN−1.

Hence, our technique needs to know the symbolic upper bound on the value of the loop

counter to be able to compute the number of iterations to be peeled from the program.

Further, when programs have loops with non-linear termination conditions, the construc-

tion of the difference program becomes challenging. The number of peeled iterations itself

may be a function of N and possibly result in a loop in the difference program. For ex-

ample, consider a loop in PN with the counter i initialized to 0 and the loop termination

condition “i < N2”. The corresponding loop in PN−1 has the same initialization but the

termination condition is “i < (N − 1)2”. “2 × N + 1” iterations must be peeled from

this loop. For such loop conditions, an entire loop appears as the peel in the difference

program. Since the number of iterations to be peeled is not a constant number, currently

while computing this peel (in line 7 of Algorithm 4), our technique reports a failure to

handle such programs. Further, our grammar restricts the shape of loops that can be

verified using our technique. Most notably, we analyze programs with only non-nested

loops. We have designed a variant of the full-program induction technique [CGU21b]
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that can verify a class of programs with nested loops. The technique greatly simplifies

the computation of difference programs. It infers and uses relations between two slightly

different versions of the program during the inductive step. We refer the interested reader

to Chapter 7 that describes the relational full-program induction technique [CGU21b].

The inductive reasoning may remain inconclusive when the rank of the difference

programs, as defined in Sect. 6.4, does not reduce during the successive invocations to

verify the post-condition using our technique. Continuous reduction in the rank/progress

measure is crucial to the success of full-program induction. When no progress is observed,

we suspend the verification attempt in line 20 of the routine FPIVerify in Algorithm 13.

Though the ranking functions can be defined in many possible ways, there are programs

that pose a challenge in computing the difference program in a way that the rank of the

computed difference program does not reduce. However, such programs are rarely seen in

practice.

Our technique may fail to verify a correct program if the heuristics used for weakest

pre-condition either fail or return a pre-condition that causes violation of the base-case

checked on line 23 of the routine FPIVerify in Algorithm 13.

Apart from the conceptual limitations mentioned above, our prototype implemen-

tation has a few limitations. We currently support expressions in assignment statements

with only {+,−,×,÷} operators. In the implementation we support a single program

parameter and peel only the last iterations of loops. Despite all these limitations, our

experiments show that full-program induction performs remarkably well on a large suite

of benchmarks.

6.5.4 Relation to Techniques in Compilers

In compilers, the polyhedral analysis and scalar evolution (refer Section 2.6) are widely

used techniques, especially for parallelization and program optimization. In this section,

we present the strengths and weaknesses of such techniques vis-a-vis full-program induc-

tion and explore possible synergies with our technique.

Strengths

As stated in the previous section, our grammar restricts the shape of loops that can be

verified using our technique, disallowing non-nested loops. The primary reason for this
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// assume(true)

1. S = 0;

2. for(i=0; i<N; i++) {

3. A[i] = 0;

4. }

5. for(k=0; k<N; k++) {

6. S = k;

7. for(l=0; l<N; l++) {

8. S = S + 1;

9. }

10. A[k] = A[k] + S;

11.}

// assert(∀x∈[0,N) A[x] = N + x)

Figure 6.12: An Example with a Nested Loop

restriction are the challenges associated with the computation of difference programs.

We present an example of a program with a nested loop that is out of scope for the

full-program induction technique.

Consider the Hoare triple in Fig. 6.12. The first loop in the program initializes array

A. The second loop in the program is a nested loop, where the inner loop computes a

recurrence on a scalar variable S that is reinitialized at the beginning of each iteration

of the outer loop. The value of S is added to each element of A in the corresponding

iteration of the outer loop. The pre-condition of this program is true; the post-condition

asserts that each element of array A has the value N . The nested loop in this program is

a bottleneck for the computation of the difference program, hindering the application of

full-program induction.

Several analysis techniques, such as those used in compiler domain, may be able to

infer useful relations for such programs with nested loops. In this case, the polyhedral

analysis as well as the scalar evolution analysis may be able to infer affine relations between

the program variables.
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// assume(true)

1. S = 0;

2. X = 0;

3. for(i=0; i<N; i++) {

4. if( i == X + 2*sqrt(X) + 1 ) {

5. S = S + i;

6. X = i;

7. }

8. }

// assert(∃ k. k2 ≤ N < (k+1)2 ∧ S = k×(k+1)×(2k+1)/6)

Figure 6.13: An Interesting Example

Weakness

The polyhedral analysis and scalar evolution may have a hard time inferring relations in

programs with non-affine computations, especially when the computation is performed

using only affine expressions. For the example in Fig. 5.1, these analyses may be able

to capture quantified affine expressions over the arrays used in the program, the large

bulk of the analysis effort is still delegated to the back-end solver which in many cases

are unable to reason with given set of formulas. The inference task becomes even trickier

in cases where the computation performed within loops is guarded by complex branch

conditions. In such cases, these analysis techniques will be unable to infer useful facts

about the program.

Consider the Hoare triple in Fig. 6.13. The program first initializes the scalars S and

X to 0. The loop in the program has a branch statement with a complicated conditional

expressions parametric in the loop counter i and the scalar variable X. The loop adds the

value of i the the scalar variable S and assigns i to X only when the branch condition

evaluates to true. The pre-condition of this program is true; the existentially quantified

post-condition asserts that the value of S is the sum of all perfect squares between 0 to

N .

Full-program induction can easily verify this program. Interestingly, none of the
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variables in the program are “affected”. Hence, computing the difference program is easy

for full-program induction. The difference program consists of only the peeled iterations

the loop in Fig. 6.13. Further, the inductive hypothesis already supplies the reasoning

in the inductive step with some useful facts about the program. This lifts a significant

amount of analysis effort that the back-end SMT solver has to put in.

Synergies with Full-Program Induction

Our techniques are orthogonal to most analysis and verification techniques in literature.

We can explore various avenues to identify the synergies between the polyhedral analysis

and recurrence solving techniques like scalar evolution and our technique. An interesting

line of work is to use the relations inferred by these techniques to enrich different steps

of the full-program induction technique. In fact, the relation full-program induction de-

scribed in Chapter 7 can directly use the inferred relations during the inductive step of

reasoning. Even the tile-wise reasoning presented in Chapter 4 can use such relations (as

already described in Section 4.1.5). The inferred affine relations may also be useful in

simplifying the difference program. In the future, we plan on using these analysis as a

pre-processing step to optimize the programs for verification in a subsequent enhancement

of our technique. We also consider several synergistic opportunities for the construction

and use of data dependencies which are also computed during polyhedral analysis in our

techniques (described in Section 5.3.3).

6.6 Experimental Evaluation

In this section, we present an extensive experimental evaluation of the full-program in-

duction technique on a large set of array-manipulating benchmarks.

6.6.1 Implementation

We have implemented our technique in a prototype tool called Vajra. Our tool and the

benchmarks used in the experiments are publicly available at [CGU20b]. Vajra takes a

C program in SV-COMP format as input. The tool, written in C++, is built on top of

the LLVM/CLANG [LA04] 6.0.0 compiler infrastructure. We use CLANG front-end to

obtain LLVM bitcode. Several normalization passes such as constant propagation, dead
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code elimination, static single assignment (SSA) for renaming variables and arrays, loop

normalization for running loop-dependent passes that identify program constructs such

as loop counters, lower bound and upper bound expressions, branch conditions and so on,

are performed on the bitcode. We use Z3 [MB08] v4.8.7 as the SMT solver to prove the

validity of the parametric Hoare triples for loop-free programs and to compute weakest

pre-conditions. We have also implemented a Gaussian elimination based procedure that

propagates array equalities and simplifies select store nests in the generated SMT formula

to compute weakest pre-conditions.

6.6.2 Benchmarks

We have evaluated Vajra on a test-suite of 231 benchmarks inspired from different al-

gebraic functions that compute polynomials as well as a standard array operations such

as copy, min, max and compare. Of these there are 121 safe benchmarks and 110 unsafe

benchmarks. All our programs take a symbolic parameter N which specifies the size of

each array as well as the number of times each loop executes. Several benchmarks in the

test-suite follow different types of templates wherein either the number of loops in the

program increases or they use potentially different data values. Program from the first

kind of templates allow us to gauge the scalability aspect of our technique as the number

of loops in the program increases. Programs from the latter templates allow for checking

the robustness of our technique to the content of arrays and scalars.

Assertions in the benchmarks are either universally quantified or quantifier free safety

properties. The predicates in these assertions are (in-)equalities over scalar variables,

array elements, and possibly non-linear polynomial terms over N . Although our technique

can handle some classes of existentially quantified assertions as discussed in Sect. 5.5, all

the examples considered for our experiments have universally quantified or quantifier-

free assertions. The approach described in the paper is naturally applicable to programs

with such assertions, given that the underlying SMT solver can discharge the verification

conditions containing formulas with existential quantification and quantifier alternation

when a loop-free difference program is automatically computed. Handling post-conditions

with existential quantification and quantifier alternation are part of future work.
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Tool Success CE Inconclusive TO

Safe

Vajra 110 0 11 0

VIAP 58 0 2 61

VeriAbs 50 1 0 70

Booster 36 27 17 41

VapHor 27 9 2 83

FreqHorn 26 0 19 76

Unsafe

Vajra 0 109 1 0

VIAP 1 108 0 1

VeriAbs 0 102 0 8

Booster 0 84 15 11

VapHor 1 106 1 2

FreqHorn 0 99 0 11

Figure 6.14: Summary of the Experimental Results

6.6.3 Experimental Setup

All experiments were performed on a Ubuntu 18.04 machine with 16GB RAM and running

at 2.5 GHz. We have compared our tool Vajra against the verifiers for array programs

VIAP (v1.1) [RL18], VeriAbs (v1.3.10) [ACC+20], Booster (v0.2) [AGS14], Vaphor

(v1.2) [MG16] and FreqHorn (v.0.5) [FPMG19]. C programs were manually converted

to mini-Java as required by Vaphor and CHC formulae as required by FreqHorn. Since

FreqHorn does not automatically find counterexamples, so we used the supplementary

tool expl from its repository on unsafe benchmarks as recommend by them. We have used

the same version of VeriAbs that was used to perform the experiments in [CGU20a],

since the later version of VeriAbs invokes our tool Vajra in its pipeline for verifying

array programs (refer [ACC+20]). A timeout of 100 seconds was set for these experiments.
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Figure 6.15: Quantile Plot Showing the Performance of the Tools on Safe Benchmarks
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Figure 6.16: Quantile Plot Showing the Performance of the Tools on Unsafe Benchmarks

6.6.4 Summary of the Results

We executed all six tools on the entire set of 231 benchmarks. A table with the summary

of obtained results is shown in Fig. 6.14. We present the results on safe and unsafe

benchmarks separately for a fair representation of each tool on the set of benchmarks.

6.6.5 Analysis on Safe Benchmarks

Vajra verified 110 safe benchmarks, compared to 58 verified by VIAP, 50 by VeriAbs,

36 by Booster, 27 by Vaphor and 26 by FreqHorn. Vajra was inconclusive on 11

benchmarks. The reasons for the inability of our tool to generate a conclusive result are
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as follows: (1) the difficulty in computing a difference program due to the presence of a

branch condition dependent on N or complex operations such as modulo, (2) difficulty in

computing the required strengthening of the pre- and post-conditions and (3) the back-end

SMT solver returning an inconclusive result.

Vajra verified 52 benchmarks on which VIAP diverged, primarily due to the in-

ability of VIAP’s heuristics to get closed form expressions. VIAP verified 5 benchmarks

that could not be verified by the current version of Vajra due to syntactic limitations.

Vajra, however, is two orders of magnitude faster than VIAP on programs that were

verified by both (refer Fig. 6.15).

Vajra proved 60 benchmarks on which VeriAbs diverged. VeriAbs ran out of

time on programs where loop shrinking and merging abstractions were not strong enough

to prove the assertions. VeriAbs reported 1 program as unsafe due to the imprecision

of its abstractions and it proved 3 benchmarks that Vajra could not.

Vajra verified 74 benchmarks that Booster could not. Booster reported 27

benchmarks as unsafe due to imprecise abstractions, its fixed-point computation engine

reported unknown result on 17 benchmarks and it ended abruptly on 41 benchmarks.

Booster also proved 2 benchmarks that could not be handled by the current version of

Vajra due to syntactic limitations.

Vajra verified 83 benchmarks that Vaphor could not. The distinguished cell ab-

straction technique implemented in Vaphor is unable to prove safety of programs, when

the value at each array index needs to be tracked. Vaphor reported 9 programs unsafe

due to imprecise abstraction, returned unknown on 2 programs and ended abruptly on 83

programs. Vaphor proved 2 benchmarks that Vajra could not.

Vajra verified 84 programs on which FreqHorn diverged, especially when con-

stants and terms that appear in the inductive invariant are not syntactically present in

the program. FreqHorn ran out of time on 76 programs, reported unknown result or

ended abruptly on 19 benchmarks. FreqHorn verified a benchmark with a single loop

that Vajra could not.

All the benchmarks that are uniquely solved by Vajra have multiple sequentially

composed loops and/or a form of aggregation/cross-iteration dependence via a scalar

variable or an array.
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Instance Loops zerosum zerosum-const zerosum-m zerosum-const-m

1 3 0.54 0.49 – –

2 5 0.87 0.88 0.86 0.92

3 7 1.28 1.27 1.26 1.21

4 9 1.73 1.94 2.07 1.76

5 11 2.32 2.56 2.31 2.48

6 13 – – 2.94 2.95

Figure 6.17: Template-wise Analysis of the Results for the ‘zerosum’ Benchmarks

6.6.6 Analysis on Unsafe Benchmarks

Vajra disproved 109 benchmarks, compared to 108 disproved by VIAP, 102 by Veri-

Abs, 84 by Booster, 106 by Vaphor and 99 by expl, the supplementary tool that

comes with FreqHorn. Vajra was unable to disprove 1 benchmark.

Vajra disproved 1 benchmark which VIAP could not. VIAP concluded 1 bench-

mark as safe and timed out on 1 benchmark. Even on unsafe benchmarks, Vajra, is an

order of magnitude faster than VIAP (refer Fig. 6.16). Vajra disproved 7 benchmarks

which VeriAbs could not. VeriAbs ran out of time on 8 programs.

Vajra disproved 25 benchmarks that Booster could not. Booster reported

unknown result on 15 benchmarks and it timed out on 11 benchmarks. Vajra disproved

3 benchmarks that Vaphor could not. Vaphor is proved 1 program as safe, returned

unknown on 2 programs and timed out on 2 programs. Vajra disproved 10 programs

which expl could not. expl ran out of time on 11 programs.

6.6.7 Performance Comparison

The quantile plots in Figs. 6.15 and 6.16 show the performance of each tool on all the safe

and unsafe benchmarks respectively in terms of time taken to produce the result. Vajra

verified/disproved each benchmark within three seconds. In comparison, as seen from the

plots, other tools took significantly more time in proving the programs.

As mentioned previously, the test-suite has several benchmarks that are instantiated

from different templates. For such instantiated benchmarks that only change the data

values in the instances of the templates, we did not see any change in the performance of
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Vajra. Hence, we do not discuss them further. We now discuss the results for a set of

templates where the number of loops in the benchmarks instantiated from them increase.

In Tab. 6.17, we present the results of executing Vajra on the benchmarks instantiated

from the ‘zerosum’ templates. The first column indicates the benchmark instance number,

the second column indicates the number of loops in the instantiated benchmark, columns

three to six indicate the benchmark template name that is instantiated and give the time

(in seconds) taken by Vajra to prove the given assertion in the benchmark instance. It

can be seen from the table that as the number of loops increase in the benchmark, our

tool requires more time in solving the benchmark. This is primarily attributed to pre- and

post-condition strengthening step in our technique that requires our technique to infer

and prove auxiliary predicates iteratively during the inductive step.

6.7 Comparison with Related Techniques

Earlier work on inductive techniques can be broadly categorized into those that re-

quire loop-specific invariants to be provided or automatically generated, and those that

work without them. Requiring a “good” inductive invariant for every loop in a pro-

gram effectively shifts the onus of assertion checking to that of invariant generation.

Among techniques that do not require explicit inductive invariants or mid-conditions

for each loop, there are some that require loop invariants to be implicitly generated by

a constraint solver. These include techniques based on constrained Horn clause solv-

ing [KBGM15, GSV18, FPMG19, MG16], acceleration and lazy interpolation for ar-

rays [AGS14] and those that use inductively defined predicates and recurrence solving

[GGK20, RL18, HHKR10], among others.

QUIC3 [GSV18], FreqHorn [FPMG19] and the technique in [KBGM15] infer uni-

versally quantified inductive invariants of array programs specified as Constrained Horn

Clauses. QUIC3 [GSV18] extends the IC3 framework to a combination of SMT theo-

ries and performs lazy quantifier instantiations. FreqHorn [FPMG19] infers universally

quantified invariants over arrays within its syntax-guided synthesis framework and can

reason with complex array index expressions by adopting the tiling [CGU17] ideas.

Vaphor [MG16] transforms array programs to array-free Horn formulas. Their

technique is parameterized by the number of array cells to be tracked resulting in an
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eager quantifier instantiation. Booster [AGS14] combines acceleration [BIK10, JSS14]

and lazy abstraction with interpolation for arrays [ABG+12a]. Performing interpolation

to infer universally quantified array properties is difficult [JM07, MA15]. The technique

does not always succeed, especially for programs where simple interpolants are difficult

to compute [CGU17].

VIAP [RL18] translates the program to an array-free quantified first order logic

formula in the theory of equality and uninterpreted functions using the scheme proposed

in [Lin16]. They use several tactics to simplify the generated formula and apply induction

over array indices to prove the property. Unlike our method, it does not have heuristics

for finding additional pre-conditions that are required for the induction proof to succeed

which our method successfully infers. [GGK20] uses theorem provers to introduce and

prove lemmas that implicitly capture inductive loop invariants at arbitrary points in

the program described in trace logic. Thanks to the impressive capabilities of modern

constraint solvers and the effectiveness of carefully tuned heuristics for stringing together

multiple solvers, approaches that rely on constraint solving have shown a lot of promise in

recent years. However, at a fundamental level, these formulations rely on solving implicitly

specified loop invariants garbed as constraint solving problems.

Template-based techniques [GMT08, SG09, BHMR07] search for inductive invariants

by instantiating the parameters of a fixed set of templates within the abstract interpreta-

tion framework. They can generate invariants with alternating quantifiers, however, the

user must supply invariant templates and the cost of generating invariants is quite high.

A large number of techniques have been proposed in literature that use induction

[DM97, BC00, ES03, GLD09, CJRS13, RK15, UTS17] and its pragmatically more useful

version k-induction [SSS00, DMRS03, HT08, DKR10, KT11, DHKR11, BDW15, BJKS15,

GIC17, KVGG19, ARG+21, YBH21]. These techniques generate and use loop invariants,

especially when aimed at verifying safety properties of programs. In contrast, our novel

technique does not rely on generation or use of loop-specific invariants and differs signifi-

cantly from these methods in the way in which the inductive step is formulated using the

computed difference programs and difference pre-conditions.

There are yet other inductive techniques, such as that in [SB12, CGU17, ISIRS20,

CGU21b], that truly do not depend on loop invariants being generated. In fact, the

technique of [SB12] comes closest to our work in principle. However, [SB12] imposes
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severe restrictions on the input programs to move the peel of one loop across the next

sequentially composed loop such that the program with the peeled loops composed with

the program fragment consisting of only the peeled iterations is semantically equivalent to

the input program. They call these restrictions on the input programs as commutativity of

statements. In practice, such restrictive conditions and data dependencies are not satisfied

by a large class of programs. For instance, the examples in Fig. 5.1, Fig. 5.11 and Fig.

6.1 do not meet these restrictions. The technique of [SB12] is thus applicable only to a

small part of the program-assertion space over which our technique works.

The tiling [CGU17] technique, described in Chapter 4, for verifying universally quan-

tified properties of array programs reasons one loop at a time and applies only when

loops have simple data dependencies across iterations (called non-interference of tiles in

[CGU17]). The method effectively uses a slice of the post-condition of a loop as an induc-

tive invariant. In the case of sequentially composed loops, it also requires strong enough

mid-conditions to be automatically generated or supplied by the user. Our full-program

induction technique circumvents all of these requirements.

The method proposed in [ISIRS20] proves programs correct by induction on a rank,

chosen as the size of program states. It constructs a safety proof by automatically syn-

thesizing a squeezing function that can map higher-ranked states to a lower-ranked state,

while ensuring that original states are faithfully simulated by their squeezed counter-

parts. This allows the method to shrink program traces of unbounded length, limiting

the reasoning to only minimally-ranked states. A guess-and-check approach combined

with heuristics for making educated guesses is employed for computing the squeezing

functions necessary to prove a given program. Successful synthesis of a squeezing func-

tion is equivalent to establishing the inductive step. These functions can be quite useful

in practice, for example, to prove programs that may not have a first-order representable

loop invariant. In general, squeezing functions are not easy to synthesize and automat-

ically searching for such functions is a non-trivial and an exceedingly time consuming

task. Further, the squeezing functions can only consist of commutative and invertible

operations, restricting their applicability. The technique may be used in tandem with the

classical loop invariant based methods. In comparison, our technique generates and uses

difference invariants in an explicit inductive step and it does not rely on generation and

use of squeezers to shrink the state space of the program.
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Another technique presented in [CGU21b] also performs induction on the entire

program and is a parallel line of our work. Full-program induction forms the basis of

their technique but the way in which the inductive step is formulated differs significantly

from ours as described in [CGU21b]. The method coins the term difference invariants

that relate variables/arrays in two slightly different versions of the given program. They

use just the peeled iterations of loops as difference programs and amend the inductive

reasoning using difference invariants. The technique supports nested loops as well as

branch conditions with value dependent on the program parameter N . The prototype

tool Diffy [CGU21a] implements the method. We believe that there are programs for

which [CGU21b] may not be able to successfully infer and use difference invariants, but

full-program induction (with its recursive invocation ability) will be able to verify the

post-conditions in such programs.

There are several techniques that approximate program computation during verifi-

cation. [MIG+21] has proposed a counterexample-guided abstraction refinement scheme

for programs that manipulate arrays. Their idea relies on prophecy variables to refine

the abstraction. VeriAbs [ACC+20] is an abstraction-based verifier to prove properties

of programs. It implements a portfolio of abstractions that enable the tool to leverage

bounded model checking. These abstractions tend to restrict the array-manipulating loops

to a fixed number of (possibly initial) iterations. The tool makes a series of attempts to

prove the property and uses program features to choose the next abstraction/strategy

to be applied. Fluid updates [DDA10] uses bracketing constraints, which are over- and

under-approximations of indices, to specify the concrete elements being updated in an

array without explicit partitioning. While their abstraction is independent of the given

property, they assume that only a single index expression updates the array in each loop,

severely restricting the technique. Analyses proposed in [GRS05, HP08] partition the ar-

ray into symbolic slices and abstracts each slice with a numeric scalar variable. Abstract

interpretation based techniques [LR15, CCL11] propose an abstract domain which uti-

lizes cell contents to split array cells into groups. In particular, the technique in [LR15] is

useful when array cells with similar properties are non-contiguously present in the array.

These approaches require the implementation of abstract transformers for each special-

ized domain which is not a necessity with our framework. Other techniques for analyzing

array-manipulating programs include [JM07, JSP+11].
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Program differencing [PK82], program integration [HPR89] and differential static

analysis [LVH10] have been studied in literature for various purposes. Incremental com-

putation of expensive expressions [LST98], optimizing the execution time of programs that

manipulate arrays [LSLR05], reducing the cost of regression testing [Bin92] and check-

ing data-structure invariants [SB07] are some applications of such techniques. SymDiff

[LHKR12] tool, based on differential static analysis [LVH10], displays semantic differ-

ences between different program versions and checks equivalence. However, the method

neither supports checking quantified post-conditions nor does it support loops and arrays

of potentially unbounded size. Unfortunately, these techniques do not always generate

code fragments that are well suited for property verification, especially when the input

programs manipulate arrays. To the best of our knowledge, full-program induction is the

first technique to successfully employ difference computation customized for verification

in an inductive setting.

Full-program induction also offers several other advantages over the existing tech-

niques. For instance, it can reason with different quantifiers over multiple variables, it

does not require implementation of specialized abstract domains for handling quantified

formulas and it can enable the use of existing tools and techniques for reasoning over ar-

rays. We believe that verification tools need to have an arsenal of techniques to be able to

efficiently prove a wide range of challenging problems. Our novel technique, full-program

induction, is a suitable fit for such an arsenal and has been adopted by verifiers such as

VeriAbs in practice. Since the 2020 edition of the international software verification

competition (SV-COMP), VeriAbs [ACC+20] invokes our tool Vajra in its pipeline of

tools for verifying programs with arrays from the set of benchmarks in the competition.

6.8 Conclusion

We presented a generalized difference program computation method for performing full-

program induction on a larger class of programs. Significantly, the generated difference

program can rectify the values of affected variables and arrays, allowing the technique to

verify programs with affected variables and arrays. Moreover, the full-program induction

technique can be recursively applied to simplify the difference program when it is not loop-

free. We generalized the computation of the difference pre-conditions, which is performed
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with the simultaneous strengthening of pre- and post-conditions. The generalized methods

can be applied to array-manipulating programs that store integers, matrices, polynomials,

vectors and so on, making it capable of verifying APIs used in machine learning and

cryptography libraries. We described a prototype implementation of the technique in our

tool Vajra. Experiments show that Vajra performs remarkably well vis-a-vis state-of-

the-art tools for analyzing array-manipulating programs.

Possible directions of future work include investigations into possible ways of incor-

porating automatically generated and externally supplied invariants during our analysis,

especially for computing simpler difference programs and handling programs with nested

loops. Automated support for handling assertions with existential quantification and

quantifier alternation and for verifying heap-manipulating programs as well as programs

that operate on tensors using our technique. Investigations into the use of synthesis-based

techniques for automatically computing the difference programs and adapting them to pro-

grams from various interesting domains forms another line of work. Improvements to the

algorithms for simultaneous strengthening of pre- and post-conditions can be considered.
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Chapter 7

Relational Full-Program Induction

In Chapters 5 and 6 we described the full-program induction technique [CGU20a, CGU22]

that verifies properties of programs that manipulate arrays by computing difference pro-

grams and difference pre-conditions during the inductive step. Computing difference pro-

grams is, in general, a challenging task and feasible only for a restricted class of programs.

In this chapter, we propose a novel and practically efficient induction-based technique

called relational full-program induction, that advances the state-of-the-art in automating

the inductive step when reasoning about array-manipulating programs. Relational full-

program induction greatly simplifies difference computation by using only the peels of

loops as the difference program. The technique generates two slightly different versions of

a program, and then infers specific kinds of relations between the corresponding variables

of the two versions to aid the formulation of the inductive step. This allows us to auto-

matically verify interesting properties of a class of array-manipulating programs that are

beyond the reach of state-of-the-art induction-based techniques, viz. [CGU22, CGU20a,

RL18, SB12]. The verification tool Vajra [CGU20b] that implements full-program in-

duction is a part of the portfolio of techniques in VeriAbs [ACC+20] – the winner of

SV-COMP 2021 in the ReachSafety-Arrays sub-category and is the closest related work for

reasoning about array-manipulating programs. Interestingly, the relational full-program

induction technique presented in this chapter addresses several key limitations of full-

program induction implemented in Vajra, thereby making it possible to analyze a much

larger class of array-manipulating programs than can be done by VeriAbs. Significantly,

this includes programs with nested loops that have hitherto been beyond the reach of

automated techniques that use mathematical induction [CGU22, CGU20a, RL18, SB12].
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Relational full-program induction can thus be viewed as a significant generalization of

full-program induction. A part of the work described in this chapter has been published

as a conference paper in CAV 2021 [CGU21b].

7.1 Introduction

In this chapter, we present relational full-program induction and highlight its difference

vis-a-vis the full-program induction technique. A key innovation in relational full-program

induction is the construction of two slightly different versions of a given program that have

identical control flow structures but slightly different data operations. We automatically

identify relations, between corresponding variables in the two versions of a program at

key control flow points. Interestingly, these relations often turn out to be significantly

simpler than inductive invariants required to prove the property directly. This is not

entirely surprising, since these relations depend less on what individual statements in

the programs are doing, and more on the difference between what they are doing in the

two versions of the program. We show how the two versions of a given program can be

automatically constructed, and how differences in individual statements can be analyzed

to infer simple relational invariants. We introduce the notion of difference invariants that

are relational invariants specified using only the difference of values of two versions of a

variable/array. Finally, we show how these difference invariants can be used to simplify

the reasoning in the inductive step of the relational full-program induction technique.

We consider programs PN parameterized by a symbolic integer N (> 0) consisting

of (possibly nested) loops that manipulate arrays generated by the grammar in Fig. 3.1.

The sizes of arrays in the program are also parametric in N . We verify (a sub-class of)

quantified and quantifier-free properties of the form specified in Section 3.4 that may

depend on the symbolic parameter N . We view the verification problem as one of proving

the validity of a parameterized Hoare triple {ϕ(N)} PN {ψ(N)} for all values of N (> 0),

where N is a free variable in ϕ(·) and ψ(·).

7.1.1 Motivation and Examples

To illustrate the kind of programs that are amenable to our relational full-program in-

duction technique, consider the program shown in Fig. 7.1, adapted from an SV-COMP
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// assume(true)

1. S = 0; F = 1;

2. for(i=0; i<N; i++) {

3. S = S + 1;

4. if(A[i] >= 0) B[i] = 1;

5. else B[i] = 0;

6. }

7. for(j=0; j<N; j++) {

8. if(S == N) {

9. if(A[j] >= 0 && !B[j]) F = 0;

10. if(A[j] < 0 && B[j]) F = 0;

11. }

12.}

// assert(F = 1)

Invariant after the assume statement

S = ? ∧ F = ? ∧ ∀x ∈ [0, N) (A[x] = ? ∧ B[x] = ?)

Invariant after executing statements on line 1

S = 0 ∧ F = 1 ∧ ∀x ∈ [0, N) (A[x] = ? ∧ B[x] = ?)

Invariant at loop head on line 2

S = i ∧ F = 1 ∧ ∀x ∈ [0, N) A[x] = ? ∧

∀x ∈ [0, i)
(
(A[x] ≥ 0 ⇒ B[x] = 1) ∧

(A[x] < 0⇒ B[x] = 0)
)

Invariant after executing the first loop

S = N ∧ F = 1 ∧ ∀x ∈ [0, N) A[x] = ? ∧

∀x ∈ [0, N)
(
(A[x] ≥ 0 ⇒ B[x] = 1) ∧

(A[x] < 0⇒ B[x] = 0)
)

Figure 7.1: Motivating Example - I

benchmark. This program has a couple of sequentially composed loops that update arrays

and scalars. The scalars S and F are initialized to 0 and 1 respectively before the first

loop starts iterating. Subsequently, the first loop computes a recurrence in variable S

and initializes elements of the array B to 1 if the corresponding elements of array A have

non-negative values, and to 0 otherwise. The outermost branch condition in the body of

the second loop evaluates to true only if the program parameter N and the variable S have

same values. The value of F is reset based on some conditions depending on corresponding

entries of arrays A and B. The pre-condition of this program is true; the post-condition

asserts that F is never reset in the second loop. The invariants required to prove the assert

are shown in the right flank of Fig. 7.1, where ? indicates a non-deterministic value.

State-of-the-art techniques find it difficult to prove the assertion in this program.

Specifically, Vajra [CGU20b] (that implements full-program induction [CGU20a, CGU22])

is unable to prove the property, since it cannot reason about the branch condition (in the

second loop) whose value depends on the program parameter N . VeriAbs [ACC+20],

which employs a sequence of techniques such as loop shrinking, loop pruning, and induc-

tive reasoning using Vajra is also unable to verify the assertion shown in this program.
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// assume(true)

1. S = 0;

2. for(i=0; i<N; i++) {

3. A[i] = 0;

4. }

5. for(j=0; j<N; j++) {

6. S = S + 1;

7. }

8. for(k=0; k<N; k++) {

9. for(l=0; l<N; l++) {

10. A[l] = A[l] + 1;

11 }

12. A[k] = A[k] + S;

13.}

// assert(∀x∈[0,N) A[x] = 2×N)

Invariant after the assume statement

S = ? ∧ ∀x ∈ [0, N) A[x] = ?

Invariant at loop head on line 2

S = 0 ∧ ∀x ∈ [0, i) A[x] = 0

Invariant at loop head on line 5

S = j ∧ ∀x ∈ [0, N) A[x] = 0

Invariant at loop head on line 8

S = N ∧ ∀x ∈ [0, k) A[x] = k + S ∧ ∀x ∈ [k, N) A[x] = k

Invariant at loop head on line 9

S = j ∧ ∀x ∈ [0, k) A[x] = k + S ∧ ∀x ∈ [k, N) A[x] = k ∧

∀x ∈ [0, l) (l < k⇒ A[x] = k + 1 + S) ∧ (l ≥ k⇒ A[x] = k + 1)

∧ ∀x ∈ [l, N) (l < k⇒ A[x] = k + S) ∧ (l ≥ k⇒ A[x] = k)

Figure 7.2: Motivating Example - II

Indeed, the loops in this program cannot be merged as the final value of S computed by

the first loop is required in the second loop; hence loop shrinking does not help. Also,

loop pruning does not work due to the complex dependencies in the program and the fact

that the exact value of the recurrence variable S is required to verify the program. Subse-

quent abstractions and techniques applied by VeriAbs from its portfolio are also unable

to verify the given post-condition. VIAP [RL18] translates the program to a quantified

first-order logic formula in the theory of equality and uninterpreted functions [Lin16].

The tool applies a sequence of tactics to simplify and prove the generated formula. These

tactics include computing closed forms of recurrences, induction over array indices and

the like to prove the property. However, its sequence of tactics is unable to verify this

example within our time limit of 1 minute.

Benchmarks with nested loops are a long standing challenge for most verifiers. Con-

sider the program shown in Fig. 7.2 with a nested loop in addition to sequentially com-

posed loops. The first loop initializes entries in array A to 0. The second loop aggregates
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a constant value in the scalar S. The third loop is a nested loop that updates array A

based on the value of S. The entries of A are updated in the inner as well as outer loop.

The property asserts that on termination, each array element equals twice the value of

the parameter N . The invariants required to prove the assert are shown in the right flank

of Fig. 7.2, where ? indicates a non-deterministic value.

While the inductive reasoning of Vajra and the tactics in VIAP do not support

nested loops, the sequence of techniques used by VeriAbs is also unable to prove the

given post-condition in this program. In sharp contrast, our prototype tool Diffy is able

to verify the assertions in both these programs automatically within a few seconds. This

illustrates the power of the inductive technique proposed in this chapter.

7.1.2 Instantiation of the Technique in Diffy

We have implemented the relational full-program induction technique in a prototype tool

called Diffy. The tool is written in C++. It is built using the LLVM/CLANG [LA04]

compiler framework and the SMT solver Z3 [MB08]. We perform extensive experiments

using the relational full-program induction technique implemented in Diffy. We compare

its performance vis-a-vis state-of-the-art tools for verifying properties of array programs

that have participated in SV-COMP. Our tool Diffy is significantly more efficient as

compared to other tools on a class of programs and is able to solve many difficult problem

instances on which other tools run out of resources. As is usual, each approach has its

own strengths and limitations; Diffy being no exception.

The main contributions of the chapter can be summarized as follows:

• We present a novel method of performing relational full-program induction, to prove

interesting properties of a class of programs that manipulate arrays.

• We introduce the concept of difference invariants that are relational invariants spec-

ified using only the difference of values of two versions of a variable/array. The

crucial inductive step in the novel technique computes and uses relations between

variables and arrays from two slightly different versions of the same program.

• We describe the algorithms for relational full-program induction. We present the

transformations of the input program for the inductive step of the analysis and the
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techniques to infer simple difference invariants from two slightly different versions

of the same program.

• We describe a prototype tool Diffy that implements the relational full-program

induction technique. The tool is built on top of the LLVM/CLANG compiler

framework and the Z3 SMT solver.

• We compare Diffy vis-a-vis state-of-the-art tools for verification of C programs

that manipulate arrays on a large set of benchmarks. We demonstrate that Diffy

significantly outperforms the winners of SV-COMP 2019, 2020 and 2021 in the

ReachSafety-Arrays sub-category.

7.2 Overview of Relational Full-Program Induction

In this section, we provide an overview of the main ideas underlying the relational full-

program induction technique. We then compare and contrast the relational full-program

induction technique that infers and uses specialized relational invariants, called difference

invariants, from the full-program induction technique (described in Chapters 5 and 6)

that uses difference programs. We assume that we are given a parameterized pre-condition

ϕ(N), and our goal is to establish the parameterized post-condition ψ(N), for all N > 0.

To keep the exposition simple, we consider the program PN , shown in the first column of

Fig. 7.3, where N is a symbolic parameter denoting the sizes of arrays a and b.

The technique inducts over the entire program, via the program parameter N , and

not on the individual loops in the program. We first check the base case of the induction,

by verifying that the parameterized Hoare triple holds for some small values of N , say

0 < N ≤ M . We assume that every loop in PN can be statically unrolled a number

(say f(N)) of times that depends only on N , to yield a loop-free program P̂N that is

semantically equivalent to PN . The base case is checked using an off-the-shelf SMT

solver, such as Z3, after compiling the pre-condition, the loop-free program and the post-

condition into an SMT formula.
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for(i=0; i<N; i++)

for(j=0; j<N; j++)

x = x + N*N;
a[i] = a[i] + N;

PN

b[j] = x + j;

for(i=0; i<N-1; i++)

for(j=0; j<N-1; j++)

x = x + N*N;

a[i] = a[i] + N ;

b[j] = x + j;

x = x + N*N;

a[N-1] = a[N-1]+N;

b[N-1] = x + N-1;

for(i=0; i<N-1; i++)

for(j=0; j<N-1; j++)

x = x + N*N;

a[i] = a[i] + N ;

b[j] = x+N*N+ j;

x = x + N*N ;
a[N-1] = a[N-1]+N;

b[N-1] = x + N-1;

QN−1

Peel(PN)

for(i=0; i<N-1; i++)

for(j=0; j<N-1; j++)

x=x+(N-1)*(N-1);
a[i] = a[i] + N-1;

x = x + N*N;
a[N-1] = a[N-1]+N;

PN−1

∂PN

for(k=0; k<N-1; k++)

b[k] = b[k] +

(N-1)*(2*N-1)+N*N;

x = 0; x = 0; x = 0; x = 0;

b[j] = x + j;

for(i=0; i<N-1; i++)

x = x + 2*N-1;

a[i] = a[i] + 1;

b[N-1] = x + N-1;

// ϕ(N) = true

//ψ(N) =

(∀j. b[j] = j + N3)

Figure 7.3: Pictorial Depiction of our Program Transformations
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Next, we hypothesize that the entire Hoare triple {ϕ(N − 1)} PN−1 {ψ(N − 1)}

holds for some N > M after substituting the parameter N with N − 1 uniformly across

the entire Hoare triple. We then want to relate the induction hypothesis with the Hoare

triple {ϕ(N)} PN {ψ(N)}. However, we intend to relate the programs PN and PN−1 via

a program Peel(PN) that consists of only the peeled iterations of loops. This is intended

to significantly simplify the computation of difference programs.

QN-1

Peel(PN)

PN

∀ pre-condition ϕ

∀ post-condition ψ

{ ϕ } { ϕ }

{ ψ } { ψ }

Figure 7.4: Decomposition of PN and Semantic Equivalence

The inductive step proceeds as follows. Given PN , we first algorithmically con-

struct two programs QN−1 and Peel(PN), such that PN is semantically equivalent to

QN−1; Peel(PN), as shown in Fig. 7.4. Intuitively, QN−1 is the same as PN , but with all

loop bounds that depend on N now modified to depend on N − 1 instead. Note that this

is different from PN−1, which is obtained by replacing all uses (not just in loop bounds)

of N in PN by N − 1. As we will see, this simple deviation in the verification strategy

makes the generation of the difference program Peel(PN) significantly simpler in relational

full-program induction than the generation of the difference program ∂PN in full-program

induction, as described in Chapter 6, for a larger class of programs.

The third column of Fig. 7.3 shows QN−1 and Peel(PN) generated by our algorithm

for the program PN in the first column of the figure. It is illustrative to compare these

with PN−1 and ∂PN shown in the fourth column of Fig. 7.3. Notice that QN−1 has the

same control flow structure as PN−1, but is not semantically equivalent to PN−1. In fact,

QN−1 and PN−1 may be viewed as closely related versions of the same program.

To use the information from the induction hypothesis during the induction step, we
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must relate the computation in the programs QN−1 and PN−1. Let VQ and VP denote the

set of variables of QN−1 and PN−1 respectively. We assume VQ is disjoint from VP, and

analyze the joint execution of QN−1 and PN−1 starting from a state satisfying ϕ(N). The

purpose of this analysis is to compute a relational invariant D(VQ, VP, N − 1) that relates

corresponding variables in QN−1 and PN−1 at the end of their joint execution.

The relational invariant D(VQ, VP, N − 1) can be computed using a variety of meth-

ods. The problem of computing the predicate D(VQ, VP, N − 1) that specifically relates

corresponding variables in QN−1 and PN−1 is reminiscent of (yet, different from) transla-

tion validation [Nec00, ZPFG02, ZP08, BCK11, SSCA13, DB17, GRB20], and indeed, our

calculation of D(VQ, VP, N −1) is motivated by techniques from the translation validation

literature. We introduce the concept of difference invariants to specialize this relation

between the values of corresponding variables/arrays in QN−1 and PN−1 by considering

only the difference of their values. These invariants can be modeled using simple tem-

plates that relate only the difference between corresponding variable/array in QN−1 and

PN−1. Automated synthesis algorithms based on the guess-and-check paradigm that take

into account program syntax and behaviours can also be used for inferring these difference

invariants. An important finding of our study is that corresponding variables in QN−1

and PN−1 are often related by simple expressions and predicates on N from the class of

difference invariants, regardless of the complexity of PN , ϕ(N) or ψ(N). Indeed, in all

our experiments, we did not need to go beyond quadratic expressions on N to compute

D(VQ, VP, N−1). Of the 157 safe benchmarks, 6 benchmarks required difference invariants

with quadratic terms and the rest required difference invariants with only linear terms.

For unsafe benchmarks, we do not require computation of difference invariants since the

analysis concludes after the base-case gets violated.

ϕ(N) ϕ′(N-1) ∂ϕ′(N)⇒
Figure 7.5: Difference Pre-condition

Some pre-conditions ϕ(N) do not admit any ∂ϕ(N) such that ϕ(N)⇒ ϕ(N − 1) ∧

∂ϕ(N). It is, however, often easy to compute formulas ϕ′(N − 1) and ∆ϕ′(N) in such
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cases such that ϕ(N)⇒ ϕ′(N − 1)∧∆ϕ′(N) (Fig. 7.5), and the variables/array elements

in ∆ϕ′(N) are not modified by either PN−1 or QN−1. For example, if we were to consider

a (new) pre-condition ϕ(N) ≡
(∧N−1

i=0 A[i] = N
)

for the program PN shown in the first

column of Fig. 7.3, then we have ϕ′(N−1) ≡
(∧N−2

i=0 A[i] = N
)

and ∆ϕ′(N) ≡
(
A[N−1] =

N
)
. We assume the availability of such a ϕ′(N −1) and ∆ϕ′(N) for the given ϕ(N). This

significantly relaxes the requirement on pre-conditions and allows a much larger class of

Hoare triples to be proved using our technique vis-a-vis that of full-program induction.

ψ′(N-1)

ψ(N)

Peel(PN)

∂ϕ′(N)

Figure 7.6: Inductive Step

Once the steps described above

are completed, we have ∆ϕ′(N),

Peel(PN) and D(VQ, VP, N − 1). It

can now be shown that if the in-

ductive hypothesis, i.e. {ϕ(N −

1)} PN−1 {ψ(N − 1)} holds, then

proving {ϕ(N)} PN {ψ(N)} re-

duces to proving {∆ϕ′(N) ∧ ψ′(N −

1)} Peel(PN) {ψ(N)}, as shown

in Fig. 7.6, where ψ′(N − 1) ≡

∃VP
(
ψ(N − 1)∧D(VQ, VP, N − 1)

)
. A

few points are worth emphasizing here.

First, if D(VQ, VP, N − 1) is obtained

as a set of equalities, the existential quantifier in the formula ψ′(N − 1) can often be

eliminated simply by substitution. We can also use quantifier elimination capabilities of

modern SMT solvers, viz. Z3 [MB08], to eliminate the quantifier, if needed. Second, recall

that unlike ∂PN generated by the full-program induction technique (refer Section 6.2),

Peel(PN) is guaranteed to be “simpler” than PN , and is indeed loop-free if PN has no

nested loops. Therefore, proving {∆ϕ′(N) ∧ ψ′(N − 1)} Peel(PN) {ψ(N)} is typically

significantly simpler than proving {ψ(N − 1) ∧ ∂ϕ(N)} ∂PN {ψ(N)}.

Finally, it may happen that the pre-condition in {∆ϕ′(N) ∧ ψ′(N−1)} Peel(PN) {ψ(N)}

is not strong enough to yield a proof of the Hoare triple. In such cases, we need to

strengthen the existing pre-condition by a formula, say ξ′(N − 1), such that the strength-

ened pre-condition implies the weakest pre-condition of ψ(N) under Peel(PN). Having a

simple structure for Peel(PN) (e.g., loop-free for the entire class of programs for which
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full-program induction works) makes it significantly easier to compute the weakest pre-

condition. Note that ξ′(N − 1) is defined over the variables in VQ. In order to ensure that

the inductive proof goes through, we need to strengthen the post-condition of the original

program by ξ(N) such that ξ(N−1)∧D(VQ, VP, N−1)⇒ ξ′(N−1). Computing ξ(N−1)

requires a special form of logical abduction that ensures that ξ(N − 1) refers only to vari-

ables in VP . However, if D(VQ, VP, N−1) is given as a set of equalities (as is often the case),

ξ(N−1) can be computed from ξ′(N−1) simply by substitution. This process of strength-

ening the pre-condition and post-condition may need to iterate a few times until a fixed

point is reached, similar to what happens in the inductive step of full-program induction.

Note that the fixed point iterations may not always converge (verification is undecidable

in general). However, in our experiments, convergence always happened within a few

iterations. If ξ′(N −1) denotes the formula obtained on reaching the fixed point, the final

Hoare triple to be proved is {ξ′(N − 1)∧∆ϕ′(N) ∧ ψ′(N − 1)} Peel(PN) {ξ(N)∧ψ(N)},

as shown in Fig. 7.7, where ψ′(N − 1) ≡ ∃VP
(
ψ(N − 1) ∧ D(VQ, VP, N − 1)

)
. Having a

simple (often loop-free) Peel(PN) significantly simplifies the above process.

7.2.1 Relation to Full-Program Induction

In this section, we compare and contrast our technique with full-program induction [CGU20a,

CGU22], presented in Chapters 5 and 6. Other techniques based on mathematical induc-

tion (on N) have been proposed in literature to solve the class of problems that we

focus on, for example, the method in [SB12]. However, since the full-program induction

technique is significantly more general and subsumes the previous techniques, henceforth

we only refer to full-program induction when talking about the earlier techniques that

use induction to prove program properties. As with any induction-based technique, full-

program induction consists of three steps. First, it checks if the base case holds, i.e. if the

Hoare triple {ϕ(N)} PN {ψ(N)} holds for small values of N , say 1 ≤ N ≤ M , for some

M > 0. Next, it assumes that the inductive hypothesis {ϕ(N − 1)} PN−1 {ψ(N − 1)}

holds for some N ≥ M + 1. Finally, in the inductive step, it shows that if the inductive

hypothesis holds, so does {ϕ(N)} PN {ψ(N)}. It is not hard to see that the inductive

step is the most crucial step in this style of reasoning. It is also often the limiting step,

since not all programs and properties allow for efficient inferencing of {ϕ(N)} PN {ψ(N)}

from {ϕ(N − 1)} PN−1 {ψ(N − 1)}.
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ϕ′(N-1)

ψ′(N-1)

QN-1

ψ(N)

Peel(PN)

∂ϕ′(N)

∂ϕ′(N)ξ′(N-1)

ξ(N)

Figure 7.7: Strengthening Pre- and Post-conditions

Like full-program induction, the relational full-program induction technique uses

induction on N to prove the Hoare triple {ϕ(N)} PN {ψ(N)} for all N > 0. Hence,

our base case and inductive hypothesis are the same as those in full-program induction.

However, our reasoning in the crucial inductive step is significantly different from that in

the full-program induction technique, and this is where our primary contribution lies. As

we show later, not only does this allow a much larger class of programs to be efficiently

verified compared to the prior techniques in the literature, it also permits reasoning about

classes of programs with nested loops, that are beyond the reach of the full-program

induction technique.

In order to better understand our contribution with relational full-program induction

and its difference vis-a-vis the full-program induction technique, we present a quick recap

of the inductive step used in the latter technique. The inductive step in full-program

induction crucially relies on finding a “difference program” ∂PN and a “difference pre-
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condition” ∂ϕ(N) such that: (i) PN is semantically equivalent to PN−1; ∂PN , where

’;’ denotes sequential composition of programs, (ii) ϕ(N) ⇒ ϕ(N − 1) ∧ ∂ϕ(N), and

(iii) no variable/array element in ∂ϕ(N) is modified by PN−1. As shown in Section 5.2,

once ∂PN and ∂ϕ(N) satisfying these conditions are obtained, the problem of proving

{ϕ(N)} PN {ψ(N)} can be reduced to that of proving {ψ(N −1)∧∂ϕ(N)} ∂PN {ψ(N)}.

This approach can be very effective if (i) ∂PN is “simpler” (e.g. has fewer loops or strictly

less deeply nested loops) than PN and can be computed efficiently, and (ii) a formula

∂ϕ(N) satisfying the conditions mentioned above exists and can be computed efficiently.

The requirement of PN being semantically equivalent to PN−1; ∂PN is a very strin-

gent one, and finding such a program ∂PN is non-trivial in general. The full-program

induction technique provides a set of syntax-guided conditionally sound heuristics for

computing ∂PN . Unfortunately, when these conditions are violated, there are no known

algorithmic techniques to generate ∂PN in a sound manner. Suppose a difference pro-

gram ∂PN is found (even if in an ad-hoc manner), it may be as “complex” as PN itself.

This makes the full-program induction less effective for analyzing such programs. As an

example, the fourth column of Fig. 7.3 shows PN−1 followed by one possible ∂PN that

ensures PN (shown in the first column of the same figure) is semantically equivalent to

PN−1; ∂PN . Notice that ∂PN in this example has two sequentially composed loops, just

like PN had. In addition, the assignment statement in the body of the second loop uses

a more complex expression than that present in the corresponding loop of PN . Proving

{ψ(N − 1) ∧ ∂ϕ(N)} ∂PN {ψ(N)} may therefore not be any simpler (perhaps even more

difficult) than proving {ϕ(N)} PN {ψ(N)}.

In addition to the difficulty of computing ∂PN , it may be not be possible to find a

formula ∂ϕ(N) such that ϕ(N) ⇒ ϕ(N − 1) ∧ ∂ϕ(N), as required by the full-program

induction technique. This can happen for a class of pre-condition formulas, such as

ϕ(N) ≡
(∧N−1

i=0 A[i] = N
)
. Notice that there is no ∂ϕ(N) that satisfies ϕ(N) ⇒ ϕ(N −

1) ∧ ∂ϕ(N) in this case. In such cases, the full-program induction technique cannot be

used at all, even if PN , ϕ(N) and ψ(N) are such that there exists a trivial proof of

{ϕ(N)} PN {ψ(N)}.

The inductive step proposed in the relational full-program induction technique (in

this chapter) largely mitigates the above problems, thereby making it possible to efficiently

reason about a much larger class of programs than that possible using the full-program
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induction technique.

While generating QN−1 and Peel(PN) in relational full-program induction may sound

similar to generating PN−1 and ∂PN from full-program induction, there are fundamental

differences between the two approaches. First, as previously noted, PN−1 is semantically

different from QN−1. Similarly, Peel(PN) is also semantically different from ∂PN . Second,

we provide an algorithm for generating QN−1 and Peel(PN) that works for a significantly

larger class of programs than the full-program induction technique that generates and

uses difference programs ∂PN . Specifically, the algorithm in this chapter works for all

programs amenable to the full-program induction technique, and also for programs that

violate the restrictions imposed by the grammar (refer Fig. 3.2 in Section 3.1) and the

conditional heuristics for computing the difference program ∂PN (refer Section 6.2). For

example, we can algorithmically generate QN−1 and Peel(PN) even for a class of programs

with arbitrarily nested loops – a program feature explicitly disallowed by the grammar in

Fig. 3.2. Third, we guarantee that Peel(PN) is “simpler” than PN in the sense that the

maximum nesting depth of loops in Peel(PN) is strictly less than that in PN . Thus, if

PN has no nested loops (all programs amenable to analysis by the full-program induction

technique belong to this class), Peel(PN) is guaranteed to be loop-free. As demonstrated

by the fourth column of Fig. 7.3, no such guarantees can be given for ∂PN generated

by the full-program induction technique. This is a significant difference, since it greatly

simplifies the analysis of Peel(PN) vis-a-vis that of ∂PN .

When given the choice between these techniques one has to ponder over the trade-

offs between the two techniques. Observe that the inductive hypothesis can be used as

giving a part of proof in the inductive step of full-program induction for free. On the

contrary, the induction hypothesis needs to be carefully massaged before it can be used

as a part of the in the inductive step in relational full-program induction. Depending on

the given program, this factor may give a performance edge to one of the techniques.

7.3 Inductive Verification using the Relational Full-

Program Induction Technique

Before presenting the algorithms for performing verification using relational full-program

induction, we describe an important pre-processing step that renames all scalar and array
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variables in the program as follows. We rename each scalar variable using the well-known

Static Single Assignment (SSA) [RWZ88] technique, such that the variable is written at

(at most) one location in the program. We also rename arrays in the program such that

each loop updates its own version of an array and multiple writes to an array element

within the same loop are performed on different versions of that array. We use techniques

for array SSA [KS98] renaming studied earlier in the context of compilers, for this purpose.

In the subsequent exposition, we assume that scalar and array variables in the program

are already SSA renamed, and that all array and scalar variables referred to in the pre-

and post-conditions are also expressed in terms of SSA renamed arrays and scalars.

The key steps in the application of the relational full-program induction technique,

as discussed in Section 7.2, are

1. Generation of QN−1 and Peel(PN) from a given PN .

2. Generation of ϕ′(N − 1) and ∆ϕ′(N) from a given ϕ(N).

3. Generation of the difference invariant D(VQ, VP, N − 1), given ϕ(N − 1), ϕ′(N − 1),

QN−1 and PN−1.

4. Proving {∆ϕ′(N) ∧ ∃VP
(
ψ(N −1)∧D(VQ, VP, N −1)

)
} Peel(PN) {ψ(N)}, possibly

by generation of ξ′(N − 1) and ξ(N) to strengthen the pre- and post-conditions,

respectively.

We now discuss techniques for solving each of these sub-problems.

7.3.1 Generating QN−1 and Peel(PN)

To concretize the intuition behind our algorithm, we first describe how the programs QN−1

and Peel(PN) are computed for a given program PN . Consider the program PN from our

motivating example shown in the first column of Fig. 7.3. The second column of this

figure shows the program obtained from PN by peeling the last iteration of each loop

of the program. Clearly, the programs in the first and second columns are semantically

equivalent. Since there are no nested loops in PN , the peels (shown in solid boxes) in

the second column are loop-free program fragments. For each such peel, we identify

variables/array elements modified in the peel and used in subsequent non-peeled parts of

the program. For example, the variable x is modified in the peel of the first loop and used
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in the body of the second loop, as shown by the arrow in the second column of Fig. 7.3.

We replace all such uses (if needed, transitively) by expressions on the right-hand side

of assignments in the peel until no variable/array element modified in the peel is used in

any subsequent non-peeled part of the program. Thus, the use of x in the body of the

second loop is replaced by the expression x + N*N in the third column of Fig. 7.3. The

peeled iteration of the first loop can now be moved to the end of the program, since the

variables modified in this peel are no longer used in any subsequent non-peeled part of the

program. Repeating the above steps for the peeled iteration of the second loop, we get

the program shown in the third column of Fig. 7.3. This effectively gives a transformed

program that can be divided into two parts: (i) a program QN−1 that differs from PN only

in that all loops are truncated to iterate N − 1 (instead of N) times, and (ii) a program

Peel(PN) that is obtained by concatenating the peels of loops in PN in the same order in

which the loops appeared in PN . It is not hard to see that if we execute the program PN ,

shown in the first column of Fig. 7.3, and the program QN−1; Peel(PN), shown in the

third column of Fig. 7.3, starting from a state σ, and if their executions terminate, then

we end up in the same program state.

Notice that the construction of QN−1 and Peel(PN) was fairly straightforward, and

did not require any complex reasoning. It is easy to extend this to arbitrary sequential

compositions of non-nested loops. Having all variables and arrays renamed, such that each

loop accesses its own version, makes it particularly easy to carry out the substitution

exemplified by the arrow shown in the second column of Fig. 7.3. In sharp contrast,

construction of ∂PN (using Algorithm 11 from Chapter 6) requires non-trivial reasoning,

and produces a program with two sequentially composed loops, as shown in the bottom

half of fourth column of Fig. 7.3.

The case of programs with nested loops is challenging and requires an additional

discussion. We start by considering a simple example shown in Fig. 7.8(a). This program

has two sequentially composed loops at the top level. The second loop also has a nested

loop within it. Following the same ideas we used in Section 5.3.2 for constructing PpN ,

we can peel each of the outer-most loops in Fig. 7.8(a) to obtain the program in Fig.

7.8(b). Notice that the peel of each outer loop is placed immediately after the loop with

its bound reduced to N − 1. It is clear that programs in Fig. 7.8(a) and Fig. 7.8(b) are

semantically equivalent (refer Lemma 5.6). The process of transforming the program in
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x = 0;

for(i=0; i<N; i++)

x = x + N;

for(i=0; i<N; i++) {

B[i] = x;

for(j=0; j<N; j++)

A[i][j] = N;

}

(a)

x = 0;

for(i=0; i<N-1; i++)

x = x + N;

x = x + N;

for(i=0; i<N-1; i++) {

B[i] = x;

for(j=0; j<N; j++)

A[i][j] = N;

}
B[N-1] = x;

for(j=0; j<N; j++)

A[N-1][j] = N;

(b)

x = 0;

for(i=0; i<N-1; i++)

x = x + N;

x = x + N;

for(i=0; i<N-1; i++) {

B[i] = x;

for(j=0; j<N-1; j++)

A[i][j] = N;

A[i][N-1] = N;

}
B[N-1] = x;

for(j=0; j<N; j++)

A[N-1][j] = N;

(c)

x = 0;

for(i=0; i<N-1; i++)

x = x + N;

for(i=0; i<N-1; i++) {

B[i] = x + N;

for(j=0; j<N-1; j++)

A[i][j] = N;

}

x = x + N;

for(i=0; i<N-1; i++)

A[i][N-1] = N;

B[N-1] = x;

for(j=0; j<N; j++)

A[N-1][j] = N;

(d)

Figure 7.8: (a) PN , (b) Program with Outer-most Loops Peeled, (c) PpN , and (d) QN−1; Peel(PN )
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Fig. 7.8(a) to the program in Fig. 7.8(b) however left the nested loop non-peeled. This is

unsatisfactory for the purposes of our inductive reasoning. We would like the inner loop

to also be peeled like the outer loops. Fig. 7.8(c) shows how this can be done where the

peel of the inner loop is still within the non-peeled part of the outer loop that contains it.

Once again, using reasoning similar to that used in Lemma 5.6, programs in Fig. 7.8(b)

and Fig. 7.8(c) are semantically equivalent. Notice that there are two kinds of peels in

the program shown in Fig. 7.8(c), marked using blue and red colored boxes. The peel in

the blue colored box appears within the non-peeled part of an enclosing loop, while the

peels in red colored boxes do not appear within any enclosing loop. This motivates us

to ask: How should these peels be moved to the end of the program while preserving the

semantics of the original program?

Fig. 7.8(d) shows how this can be done. There are two important points to note

here: (i) the peel of the inner loop shown in the blue box appears within a loop when

we move it to the end of the program, (ii) the read-after-write dependence between the

peeled statement x = x + N; and the statement B[i] = x; in the non-peeled part of the

second loop in Fig. 7.8(c) has resulted in the right hand side of the assignment B[i] = x;

to change to B[i] = x + N;. If we were to use the same notation as used in the previous

example shown in Fig. 7.3, then the part of the program in Fig. 7.8(d) before the boxed

statements would constitute QN−1 and the remainder of the program would constitute

the peel of the original program (with nested loops). The above example motivates us to

under take a careful study of how to construct peels of programs with nested loops and

how to construct QN−1 for such programs.

Generating Peels for Nested Loops

Consider a pair of abstract nested loops, L1 and L2, as shown in Fig. 7.9. Suppose that

B1 and B3 are loop-free code fragments in the body of L1 that precede and succeed the

nested loop L2. Suppose further that the loop body, B2, of L2 is loop-free.

The peel of the abstract nested loop L1 is as shown in Fig. 7.10. The first loop in

the peel includes the last iteration of L2 in each of the N − 1 iterations of L1, that was

missed in QN−1. The subsequent code includes the last iteration of L1 that was missed in

QN−1.

Formally, we use the notation L1(N) to denote a loop L1 that has no nested loops
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for(`1=0; `1<UL1(N); `1++)

for(`2=0; `2<UL2(N); `2++)
L2L1

B1

B2

B3

Figure 7.9: A Generic Nested Loop

for(`1=0; `1<UL1(N − 1); `1++)

for(`2=0; `2<UL2(N); `2++)

B2

B2

B1

B3

Figure 7.10: Peel of the Nested Loop

within it, and its loop counter, say `1, increases from 0 to an upper bound that is given

by an expression in N . Similarly, we use L1(N, L2(N)) to denote a loop L1 that has

another loop L2 nested within it. The loop counter `1 of L1 increases from 0 to an upper

bound expression in N , while the loop counter `2 of L2 increases from 0 to an upper

bound expression in `1 and N . Using this notation, L1(N, L2(N, L3(N))) represents

three nested loops, and so on. Notice that the upper bound expression for a nested loop

can depend not only on N but also on the loop counters of other loops nesting it. For

notational clarity, we define a macro LPeel(Li, a, b) as follows:

Definition 7.1 LPeel(Li, a, b) denotes the peel of loop Li consisting of all iterations

of Li where the value of `i ranges from a to b-1, both inclusive.

Note that if b-a is a constant, LPeel(Li, a, b) corresponds to the concatenation

of (b-a) peels of Li. If Li is a non-nested loop and b-a is a constant, then LPeel(Li, a,

b) is loop-free.
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We will now try to see how we can implement the transformation from Fig. 7.8(a)

to Fig. 7.8(c) for a nested loop L1(N, L2(N)). The first step is to truncate all loops to

use N − 1 instead of N in the upper bound expressions. Using the notation introduced

above, this gives the loop L1(N-1, L2(N-1)). Note that all uses of N other than in

loop upper bound expressions stay unchanged as we go from L1(N, L2(N)) to L1(N-1,

L2(N-1)). We now ask: Which are the loop iterations of L1(N, L2(N)) that have been

missed (or skipped) in going to L1(N-1, L2(N-1))? Let the upper bound expression of

L1 in L1(N, L2(N)) be UL1(N), and that of L2 be UL2(`1, N). It is not hard to see that

in every iteration `1 of L1, where 0 ≤ `1 < UL1(N − 1), the iterations corresponding to

`2 ∈ {UL2(`1, N−1), . . . , UL2(`1, N)−1} have been missed. In addition, all iterations of L1

corresponding to `1 ∈ {UL1(N − 1), . . . , UL1(N)− 1} have also been missed. This implies

that the “peel” of L1(N, L2(N)) must include all the above missed iterations. This peel

therefore is the program fragment shown in Fig. 7.11.

for(`1=0; `1<UL1(N-1); `1++)

LPeel(L2, UL2(`1,N-1), UL2(`1,N))

LPeel(L1, UL1(N-1), UL1(N))

Figure 7.11: Peel of L1(N, L2(N))

Notice that if UL2(`1,N) - UL2(`1,N-1) is a constant (as is the case if UL2(`1,N) is

any linear function of `1 and N), then the peel does not have any loop with nesting depth

2. Hence, the maximum nesting depth of loops in the peel is strictly less than that in

L1(N, L2(N)), yielding a peel that is “simpler” than the original program. This argument

can be easily generalized to loops with arbitrarily large nesting depths. The peel of L1(N,

L2(N, L3(N))) is as shown in Fig. 7.12.

Consider the program in Fig. 7.8(a). Suppose we wish to compute the peel of this

program containing sequentially composed loops L1 and L2, with L3 nested within L2. In

this case, the upper bounds of all three loops in the program are UL1(N) = UL2(N) =

UL3(N) = N . The peel is shown using boxed statements in Fig. 7.8(d). It consists of

two sequentially composed non-nested loops. The first loop takes into account the missed

iterations of the inner loop L3 (a single iteration in this example, shown in blue colored

box) that are executed in PN but are missed in QN−1. The second loop takes into account
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for(`1=0; `1<UL1(N-1); `1++) {

for(`2=0; `2<UL2(`1,N-1); `2++)

LPeel(L3, UL3(`1,`2,N-1), UL3(`1,`2,N))

LPeel(L2, UL2(`1,N-1), UL2(`1,N))

}

LPeel(L1, UL1(N-1), UL1(N))

Figure 7.12: Peel of L1(N, L2(N, L3(N)))

the iterations of the outer loop L2 that are executed in PN but are missed in QN−1.

The ideas presented above generalize easily to programs with nested loops having

arbitrary nesting depths. Recall that Definition 5.2 in Section 5.4.4 defines Peel(PN) for

programs with non-nested loops. We now extend the definition of Peel(PN) to programs

with (possibly multiple, and sequentially composed) nested loops. For convenience, we

refer to the body of a loop Li as Body(Li). The following recursive definition formally

defines the program Peel(PN).

Definition 7.2 For a loop-free program PN , Peel(PN) is an empty program. For a

program PN consisting of sequentially composed loops L1, L2, . . ., Lm, where each Li,

1 ≤ i ≤ m, may have a loop nested within it, Peel(PN) is computed as follows:

Peel(PN) := Peel(L1); Peel(L2); . . . ; Peel(Lm);

Peel(Li) := for(`i = 0; `i < ULi(N − 1); `i + +) { Peel(Body(Li)); }

LPeel(Li,ULi(N − 1),ULi(N));

Generating the Program QN−1

Recall from Section 5.4.2 that when peeled statements are moved to the end of a program

certain read-after-write and write-after-write dependencies in the original program can be

violated in general. If such dependencies involve affected variables, these can sometimes

be taken care of by introducing additional statements in the peel as discussed in Section

6.2. In the current section, we describe how to take care of such violated dependencies

by modifying some statements in the non-peeled part of the program without disturbing
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the peel.

To understand this better, consider the example shown in 7.8(c). The value of

variable x computed by the statement x = x + N; in the peel of the first loop is used by

the statement B[i] = x; within the non-peeled part of the second loop. This creates a

read-after-write dependence which would get violated if we move the peel to the end of the

program. Suppose we use x + N, i.e. right hand side expression of the assignment x = x

+ N;, in place of x in the statement B[i] = x; in the non-peeled part of the second loop.

Then the peeled statement x = x + N; can be safely moved to the end of the program

while having compensated for the violated read-after-write dependence. Note that the

same idea was also used in the previous example (Fig. 7.3). Below, we discuss how this

idea can be generalized.

Recall from Section 5.3.2 that if PN has no nested loops, then PpN is the program

obtained by peeling each loop in the program PN and by placing the peel immediately

after the loop with appropriately reduced iteration bound. For clarity of exposition, we

call this transformation “peeling loops in-place”. If PN has nested loops, we extend the

definition of PpN to denote the program obtained by recursively peeling each loop in-place.

Specifically, we first peel in-place each loop at nesting depth 1 in PN . Next, we peel in-

place each loop at nesting depth 2 in the non-peeled part of each loop at nesting depth 1 in

the resulting program. We continue this iteratively all the way until the inner-most nested

loops have been peeled in-place. Since peeling a loop in-place preserves the semantics of

the program, Lemma 5.6 continues to hold for programs with this extended definition of

PpN .

Our goal now is to see if the peeled statements in PpN can be moved to the end of

the program without affecting its semantics, like what we did in Section 6.2. Towards

this end, we now construct the dependence graph (as described in Section. 5.3.3) for

this program to identify all read-after-write and write-after-write dependencies. We now

identify if there are data dependencies where a variable/array element is in the def set of

a peeled statement, say S1, and is also in the use set of a statement, say S2, that is not

present in any peel. Every such data dependence is potentially violated when we move

peels to the end of the program. We try to compensate for such violations for read-after-

write dependencies by substituting the expression in the right hand side of the assignment

statement at S1 for the variable/array element of interest in statement S2. Violations of
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write-after-write dependencies between statements S1 and S2 cannot be compensated for

just by expression substitution, and hence, we do not handle such cases currently.

To keep the exposition simple, we preclude violations of read-after-write and write-

after-write dependencies arising from moving of peels corresponding to nested loops by

imposing some restrictions on nested loops. In order to formalize these requirements,

we introduce some notation. Given an execution trace of PN , the iteration index of a

statement S in the trace gives the value of loop counter `i for each loop Li, such that

S appears in the loop body of Li. As an example, consider the nested loop L1 shown in

Fig. 7.9. While executing a statement in block B1 during the first iteration of loop L1 the

iteration index is (`1 7→ 1) and while executing a statement in block B2 during the last

iteration of loop L1 and the first iteration of L2 the iteration index is (`1 7→ N−1, `2 7→ 1).

Assuming loop L2 is nested within loop L1 the restrictions on nested loops can now be

stated as follows:

1. A scalar variable/array element written in a statement S1 with iteration index (`1 7→

x1, `2 7→ x2) where 0 ≤ x1 < UL1(N−1) and UL2(N−1) ≤ x2 < UL2(N) must not be

used/written in any statement S2 with iteration index (`1 7→ x′1) or (`1 7→ x′1, `2 7→

x′2) where x1 ≤ x′1 < UL1(N − 1) and 0 ≤ x′2 < UL2(N − 1).

2. A scalar variable/array element used/written in a statement S1 with iteration index

(`1 7→ x1, `2 7→ x2) where 0 ≤ x1 < UL1(N−1) and UL2(N−1) ≤ x2 < UL2(N), must

not be subsequently written in any statement S2 with iteration index (`1 7→ x′1) or

(`1 7→ x′1, `2 7→ x′2) where x1 ≤ x′1 < UL1(N − 1) and 0 ≤ x′2 < UL2(N − 1).

The restrictions above pertain to the abstract nested loops L1 and L2 shown in

Fig. 7.9. These restrictions can be easily extended to any pair of loops Li, Lj such that Lj

is nested within Li at nesting depth > 2. It is important to note that these restrictions

are imposed primarily to simplify the exposition and the correctness proofs. It is possible

to use our technique even with some relaxations of these restrictions, for example, by

resorting to expression substitution, loop summarization and over-approximation. We

present some of these optimizations later along with the description of the algorithm for

generating QN−1 and Peel(PN). The following lemma asserts an important property of

programs with loops that satisfy the above mentioned restrictions.
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Lemma 7.1 Consider the program PN given by L1(N, L2(N)), i.e. L2 is nested within L1.

Suppose there are no sequentially composed loops at any nesting depth in PN and suppose

L1, L2 satisfy conditions 1 and 2. Then the set of read-after-write and write-after-write

dependencies between statements in PN−1; Peel(PN) are exactly the same as those between

corresponding statements in PN .

Proof. Since conditions 1 and 2 are satisfied, the following hold:

• There exists no read-after-write or write-after-write data dependence in PN where a

variable/array element is written in a statement in the peel of L2 and is subsequently

read/written in a statement in the non-peeled part of L1 or L2. This vacuously

ensures that no read-after-write or write-after-write dependencies originally present

in PN are violated in PN−1; Peel(PN).

• There exists no write-after-read or write-after-write data dependence in PN where

a variable/array element is used/written in a statement in the peel of L2 and it

is subsequently written in a statement in the non-peeled part of L1 or L2. This

vacuously ensures that no read-after-write or write-after-write dependencies that

were not originally present in PN are introduced in PN−1; Peel(PN).

The two cases considered above together show that the set of read-after-write and write-

after-write dependencies in PN−1; Peel(PN) are exactly the same as those in PN . �

For programs with loops having nesting depth > 2 the above lemma can be applied

to each pair of loops Li, Lj such that Lj is nested within Li. This effectively allows us to

generalize this lemma to programs with nested loops having arbitrary nesting depth.

Theorem 7.1 If a program PN has no sequentially composed loops at any nesting depth,

then PN−1; Peel(PN) is semantically equivalent to PN . Hence, PN−1 serves as QN−1.

Proof. Follows immediately from Lemma 7.1. �

We now consider what happens when the program PN has sequentially composed

loops at some nesting depth. Let PpN denote the program with in-place peeled loops. Let

P?N denote the program obtained by removing the peels of all loops, including nested loops

from PpN . It is not hard to see that the program PN−1; Peel(PN) may not be semantically
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equivalent to PN , in general. This can happen because of read-after-write and write-after-

write dependencies between a statement in the in-place peel of loop L1 and a statement

in the non-peeled part of loop L2, where L1 precedes L2 in the composition order. In such

cases, we need to construct a program QN−1 such that QN−1; Peel(PN) is semantically

equivalent to PN .

We now give a formal definition for the program QN−1.

Definition 7.3 Let L1 and L2 be a pair of sequentially composed loops at the same nesting

depth in PpN (and hence, in P?N). Let L1 precede L2 in the composition order. Suppose

there is a variable/array element vA in the def set of a statement S1 in Peel(L1) that is

also in the use set of statement S2 in the non-peeled part of L2. Let E be an expression

that gives the value of vA after executing Peel(L1) in terms of the values of variables before

Peel(L1) is executed. Then, QN−1 is the program obtained from P?N by substituting the use

of each such variable/array element vA in S2 with the corresponding expression E.

Identifying the expression E mentioned in the definition above may not always be

easy. Specifically, when the peel of a loop Li has another loop Lj within it that computes

the value of vA, then identifying the expression E that gives the value of vA after executing

Peel(Li) in terms of the values of variables and arrays before Peel(Li) is executed may be

difficult. In such cases, to simplify the identification of the expression E mentioned in the

definition above, the effect of loops Lj in peels can be summarized, whenever possible, to

compute a closed form for Lj while generating the program QN−1. Such loops Lj occurring

in the peel of loops Li can also be summarized in Peel(PN) to simplify the inductive step

of the reasoning. We now present the algorithm for computing QN−1 and Peel(PN), which

discusses some of these cases in detail.

Algorithm to Compute QN−1 and Peel(PN)

Generalizing the above intuition, Algorithm 16 presents function GenQandPeel for

computing QN−1 and Peel(PN) for a given program PN that has loops L1, L2, . . ., Lm in

the sequential composition order, where each loop Li may have loops nested within it.

Due to the grammar of our programs (refer Section 3.1), our loops are well nested.

At a high-level, computing QN−1 consists of peeling each loop in-place and then

propagating these peels across subsequent loops. We call the routine PeelAllLoopsIn-

Place, on line 2, to compute the program PpN that has each loop peeled in-place, including
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Algorithm 16 GenQandPeel(PN : program)

1: Let sequentially composed loops in PN be in the program order L1, L2, . . ., Lm;

2: PpN := PeelAllLoopsInPlace(PN);

3: QN−1 := RemoveInPlacePeels(PpN); . At this point QN−1 is same as P?N

4: for each loop Li ∈ TopLevelLoops(PN) do

5: Peel(Li) := GenPeel(Li); . Procedure of GenPeel is given below

6: for each pair of loops Li, Lj ∈ PpN for some i, j s.t. 1 ≤ i < j ≤ m do

7: Let S1, S2 be statements in Peel(Li) and the non-peeled part of Lj respectively;

8: if ∃vA. vA ∈ def(S1) ∩ use(S2) then

9: if Peel(Li) has loops nested within it then

10: Peel(Li) := TransformPeel(Peel(Li));

. Routine TransformPeel attempts to summarize/over-approximate loops

11: if Peel(Li) is loop-free then

12: E := ComputeSymbolicExpr(vA, Peel(Li));

13: QN−1 := Substitute the use of vA at S2 in loop Lj ∈ QN−1 with E;

14: else abort;

15: Peel(PN) := Peel(L1); Peel(L2); . . . ; Peel(Lm);

16: return 〈QN−1,Peel(PN)〉;

17: procedure GenPeel(Li: loop)

18: if Li has loops nested within it then

19: Let loops nested in Li be in sequential composition order Li1 , Li2 , . . ., Lin ;

20: Peel(Li) := for(i=0; i<ULi(N − 1); i++) { GenPeel(Li1); GenPeel(Li2);

. . .; GenPeel(Lin); } LPeel(Li, ULi(N − 1), ULi(N));

21: else

22: Peel(Li) := LPeel(Li, ULi(N − 1), ULi(N));

23: return Peel(Li);

nested loops. Next, on line 3, we use the routine RemoveInPlacePeels to initialize

QN−1 with a program where the in-place peels of all loops, including nested loops, are

removed. At this point, the program QN−1 is the same as the program P?N .

We now require the peel of each loop in the program PN for the subsequent part
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of the computation of QN−1. The loop on line 4 iterates over the top level sequentially

composed loops Li, 1 ≤ i ≤ m, in PN and invokes the routine GenPeel(Li) to generate

Peel(Li) on line 5. The routine GenPeel, presented in lines 17 – 23, recursively computes

the peel of Li. In doing so, it also ends up computing the peels of loops nested within Li.

Recall that Peel(Li) consists of missed loop iterations of Li in the program PN . We

identify the missed iterations of each loop in the program PN from the upper bound

expression UB. The upper bound of each loop Lk at nesting depth k, denoted by ULk

is in terms of the loop counters `1 ≤ `2 ≤ . . . ≤ `k−1 of outer nested loops and the

program parameter N . We need to peel ULk(`1, `2, . . . , `k−1, N) − ULk(`1, `2, . . . , `k−1, N−

1) number of iterations from each loop, where `1 ≤ `2 ≤ . . . ≤ `k−1 are counters of the

outer nesting loops. As previously discussed, whenever this difference is a constant value,

we are guaranteed that the loop nesting depth reduces by one. For non-nested loops Li, its

peel is just the last few iterations of Li. It is computed on line 22 using the macro LPeel

and the upper bound expression ULi . It may so happen that there are multiple sequentially

composed loops Lij , 1 ≤ j ≤ n nested within loop Li and not just a single loop. For loops

Li that have other loops Li1 , Li2 , . . . , Lin nested within it, we recursively build the peel

of Li on line 20 as per Definition 7.2. We again use the routine GenPeel to compute

Peel(Lij) of each loop Lij nested within Li. The peeled iterations of Li1 , Li2 , . . . , Lin were

missed in the first ULi(N − 1) iterations of Li in PN . Hence, these are placed within a

loop in the peel of Li where the loop counter goes from 0 to ULi(N − 1) as shown in line

20. The last few iterations of Li that were executed in PN but missed in QN−1 are also

placed in Peel(Li) using the macro LPeel and the upper bound expression ULi (line 20).

Since all the peels of all loops are moved at the end of the program QN−1, we need

to repair the expressions appearing in the loops in QN−1. The repairs are applied by the

loop on line 6. The loop iterates over each pair of sequentially composed loops Li and Lj

at the same nesting depth in PpN , such that Li precedes Lj in the composition order. We

look for statements S1 in Peel(Li) that update the value of a variable/array element vA

such that it is subsequently used in a statement S2 in the non-peeled part of Lj (checked

on line 8). We identify an expression E that gives the value of a variable/array element

vA at S2 in terms of the values of variables and array elements prior to executing Peel(Li)

on line 12. In the repair step, on line 13, we substitute the uses of such variables and

array elements vA at statement S2 in Lj ∈ QN−1 with the computed expression E.
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Note that the loop in lines 6 – 14 implements the substitution represented by the

arrow in the second column of Fig. 7.3. This is necessary in order to move the peel

of a loop to the end of the program. If the variables/arrays modified in the peel of a

loop are not used later, then the loop condition on line 8 is not satisfied. In such cases,

the peel can be trivially moved. Peel(Li) itself may have a loop that computes the value

of vA (checked on line 9). This makes it significantly more challenging to identify the

expression E to be substituted in QN−1. We use several optimizations to transform the

loops in Peel(Li) before trying to identify such an expression. If the modified values in

the peel can be summarized as closed form expressions, then we can replace the loop in

the peel with its summary. For example, consider the loop for (`1=0; `1<N; `1++) {

S = S + 1; } that occurs within the peel of a loop. This loop is summarized as S =

S + N; before it can be moved across subsequent code. In several cases, loops in the

peel can also be substituted with their conservative over-approximation. The routine

TransformPeel, invoked on line 10, carries out these transformations when there are

loops in Peel(Li). We have implemented these optimizations in our tool and are able to

verify several benchmarks with sequentially composed loops that have loops nested within

them. It may not always be possible to transform a peel that has loops and move it across

subsequent loops. For example, if a loop uses array elements as index to other arrays then

it can be difficult to identify the expression E to be used for substitution in QN−1. In

such cases, the procedure aborts on line 14. However, such scenarios occur less often, and

hence, they hardly impact the effectiveness of our technique. We have observed that the

optimizations mentioned here suffice for a large class of programs seen in practice.

Finally, the peels of all top level loops are stitched together on line 15. The computed

programs QN−1 and Peel(PN) are returned on line 16.

Theorem 7.2 Let QN−1 and Peel(PN) be generated by the application of function Gen-

QandPeel from Algorithm 16 on program PN . If PN and QN−1; Peel(PN) are executed

starting from the same state σ, then both programs terminate in the same state.

Proof. By Lemma 5.6, if PN and PpN are executed from the same state σ, then each

variable/array element vA has the same value on termination of both programs.

We first consider programs that have no sequentially composed loops at any nesting

depth. Let Li(N) be a loop with the highest nesting depth k = 1 (i.e. it does not have any
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loops nested within it). Then, it is easy to see that decomposing Li(N) into Li(N-1) and

Peel(Li) preserves the semantics of the loop. Now let loop Li(N) having the highest nesting

depth k > 1 be decomposed into Li(N-1) and Peel(Li). Conditions 1 and 2 ensure that

the set of read-after-write and write-after-write dependencies between statements in the

decomposition Li(N-1); Peel(Li) are exactly the same as those between the corresponding

statements in Li(N) (refer proof of Lemma 7.1). Hence, if a nested loop Li(N) and its

decomposition Li(N-1);Peel(Li) are executed from the same state σ, then both of them

terminate in the same state.

We now consider programs with sequentially composed loops. Let Li and Lj a pair

of sequentially composed loops in PpN such that Li precedes Lj. Let S1 be a statement

in Peel(Li), and S2 be a statement in the non-peeled part of the loop Lj. There can-

not be a write-after-write data dependence from S1 to S2, since renaming ensures that

each loop updates its own version of scalar variables and arrays. Hence, there can only

be a read-after-write data dependence, if at all, from the statement S1 in Peel(Li) to the

statement S2 in the non-peeled part of Lj. The substitution performed on line 13 compen-

sates for such read-after-write dependencies, ensuring that Peel(Li) can be moved across

subsequent loops Lj without affecting the program semantics. This ensures that if PN

and QN−1; Peel(PN) are executed starting from the same state σ, then both programs

terminate in the same state. �

Lemma 7.2 Suppose the following conditions hold;

1. Program PN satisfies our syntactic restrictions (see Section 3.1 of Chapter 3).

2. The upper bound expressions of all loops are linear expressions in N and in the loop

counters of outer nesting loops.

Then, the max nesting depth of loops in Peel(PN) is strictly less than that in PN .

Proof. Let ULk(`1, . . . , `k−1, N) be the upper bound expression of a loop Lk at nesting

depth k. Suppose ULk = c1.`1 + · · · ck−1.`k−1 + C.N + D, where c1, . . . ck−1, C and D are

constants. Then ULk(`1, . . . , `k−1, N) − ULk(`1, . . . `k−1, N − 1) = C, i.e. a constant. Now,

recalling the discussion in Section 7.3.1, we see that LPeel(Lk, Uk(`1, . . . , `k−1, N − 1),

Uk(`1, . . . , `k−1, N)) simply results in concatenating a constant number of peels of the loop
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Lk. Hence, the maximum nesting depth of loops in LPeel(Lk, Uk(`1, . . . , `k−1, N − 1),

Uk(`1, . . . , `k−1, N)) is strictly less than the maximum nesting depth of loops in Lk.

Suppose loop L with nested loops (having maximum nesting depth t) is passed as the

argument of the recursive function GenPeel (see Algorithm 16). In line 20 of function

GenPeel, we recursively compute the peels of all loops from nesting depth 2 and above

within L. Let Lk be a loop at nesting depth k, where 2 ≤ k ≤ t. Clearly, Lk can have at

most t − k nested levels of loops within it. When LPeel is invoked on such a loop, the

maximum nesting depth of loops in the peel generated for Lk can be at most k−1, due to

the premise that the upper bound expressions of all loops are linear expressions in N and

in the loop counters of outer nesting loops. From line 20 of function GenPeel, we also

know that this LPeel can itself appear at nesting depth t− k of the overall peel Peel(L).

Hence, the maximum nesting depth of loops in Peel(L) can be k − 1 + t − k, i.e. t − 1.

This is strictly less than the maximum nesting depth of loops in L. �

Corollary 7.1 If PN has no nested loops, then Peel(PN) is loop-free.

Proof. Follows from Lemma 7.2. �

7.3.2 Generating ϕ′(N − 1) and ∆ϕ′(N)

Suppose ϕ(N) is of the form
∧N−1
i=0 ρi (resp.

∨N−1
i=0 ρi), where ρi is a formula on the ith

elements of one or more arrays, and scalars used in PN . We infer ϕ′(N − 1) to be
∧N−2
i=0 ρi

(resp.
∨N−2
i=0 ρi) and ∆ϕ′(N) to be ρN−1 (assuming variables/array elements in ρN−1 are

not modified by QN−1). Note that all uses of N in ρi are retained as is (i.e. not changed

to N − 1) in ϕ′(N − 1). In general, when deriving ϕ′(N − 1), we do not replace any

use of N in ϕ(N) by N − 1 unless it is the limit of an iterated conjunct/disjunct as

discussed above. Specifically, if ϕ(N) does not contain an iterated conjunct/disjunct as

above, then we consider ϕ′(N −1) to be the same as ϕ(N) and ∆ϕ′(N) to be True. Thus,

our generation of ϕ′(N − 1) and ∆ϕ′(N) differs from that of the full-program induction

technique. As discussed earlier, this makes it possible to reason about a much larger class

of pre-conditions than that admissible by the full-program induction technique.

Lemma 7.3 The difference pre-condition ∆ϕ′(N) is such that (i) ϕ(N) ⇒ (ϕ′(N − 1)�

∆ϕ′(N)), where � is operator ∧ if ϕ(N) is an iterated conjunct, and � is operator ∨ if

ϕ(N) is an iterated disjunct, and (ii) QN−1 does not modify variables/arrays in ∆ϕ′(N).

222



Proof. Follows naturally from the construction of ϕ′(N − 1) and ∆ϕ′(N). �

7.3.3 Inferring Inductive Relational Invariants

Once we have PN−1, QN−1, ϕ(N − 1) and ϕ′(N − 1), we infer relational invariants. We

introduce the concept of difference invariants that specializes the relation between the

values of corresponding variables/arrays in QN−1 and PN−1 by considering only the differ-

ence of their values. We assume that programs QN−1 and PN−1 operate on disjoint copies

of variables and arrays (this can be easily achieved by adding a suffix to the names of

variables/arrays in QN−1). We construct the cross-product [ZP08] of programs QN−1 and

PN−1, and infer difference invariants at key control points in the cross-product program.

A cross-product between two programs QN−1 and PN−1 is a program QN−1 × PN−1 in

which the corresponding statements from QN−1 and PN−1 are executed synchronously in

lockstep. Recall that the programs QN−1 and PN−1 are structurally similar, even though

they may not be semantically equivalent. Specifically, these programs are guaranteed to

have synchronized iterations of corresponding loops (since both programs are obtained

from PN by restricting the upper bounds of all loops to use N − 1 instead of N). How-

ever, the conditional statements within the loop body may not always be synchronized.

Thus, whenever we can infer that the corresponding conditions c′ ∈ QN−1 and c ∈ PN−1

are equivalent, we synchronize the branches of the conditional statement. Otherwise, we

consider all four possibilities of the branch conditions namely, 〈c, c′〉, 〈c,¬c′〉, 〈¬c, c′〉, and

〈¬c,¬c′〉. It can be seen that the net effect of the cross-product is executing the programs

QN−1 and PN−1 one after the other, since they operate on a disjoint set of variables.

We run a data-flow analysis pass over the constructed cross-product to infer difference

invariants at loop head, loop exit and at each branch condition. The only data-flow

values of interest are differences between corresponding variables in QN−1 and PN−1.

Indeed, since structure and variables of QN−1 and PN−1 are similar, we can create the

correspondence map between the variables. We start the difference invariant generation

by considering relations between corresponding variables/array elements appearing in

pre-conditions of the two programs. We apply static analysis that can track equality

expressions (including disjunctions over equality expressions) over variables as we traverse

the program. These equality expressions are our difference invariants.

We observed in our experiments the most of the inferred equality expressions are
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simple expressions of N (at most quadratic in N). This not totally surprising and similar

observations have been independently made in other contexts, for example, translation

validation [GRB20], equivalence checking [CPSA19] and proving relational properties of

programs such as non-interference, secure information flow and continuity [BCK11]. Note

that the difference invariants may not always be equalities. We can easily extend our

analysis to learn inequalities using interval domains in static analysis. We can also use

a library of expressions to infer difference invariants using a guess-and-check framework.

Moreover, guessing the predicates involved in the difference invariants can be easy, since in

many cases, the expressions may be independent of the program constructs. For example,

the equality expression v′ = v, where v′ ∈ QN−1 and v ∈ PN−1, does not depend on

any other variable from the two programs. Specifically, when the variable v ∈ PN is

not identified as affected (see Section 5.3.4) then the difference invariants are indeed

equality expressions v′ = v. It is worth nothing that though we restrict ourselves to

difference invariants, other kinds of relational invariants that can aid in the computation

of ψ′(N − 1) from ψ(N − 1) by relating the corresponding variables in QN−1 and PN−1

are also permitted in our technique.

Example 7.1 Consider the programs QN−1 and PN−1 from the third and the fourth

column resp. of Fig. 7.3. The difference invariant at the head of the first loop of QN−1 ×

PN−1 is D(VQ, VP, N − 1) ≡
(
x′ − x = i× (2× N− 1) ∧ ∀i ∈ [0, N− 1), a′[i]− a[i] = 1

)
,

where x′, a′ ∈ VQ and x, a ∈ VP. Given this difference invariant for the first loop, we easily

get the difference invariant x′ − x = (N− 1)× (2× N− 1) at the exit point when the first

loop terminates. For the second loop, we compute the difference invariant D(VQ, VP, N −

1) ≡
(
∀j ∈ [0, N− 1), b′[j]− b[j] = (x′ − x) + N2 = (N− 1) × (2× N− 1) + N2

)
, where

x′, b′ ∈ VQ and x, b ∈ VP. �

Note that difference invariants and its computation are agnostic of the given post-

condition ψ(N). Hence, our technique does not need to re-run this analysis for proving

a different post-condition for the same program PN . Let ψ′(N − 1) (resp. ψ(N)) be

the post-condition and ξ′(N − 1) (resp. ξ(N)) be a formula that strengthens this post-

condition upon executing the program QN−1 (resp. PN) starting from a state that satisfies

the pre-condition ϕ′(N − 1) (resp. ϕ(N)). Then the following lemma relates the pre- and

post-conditions of QN−1 and PN via the difference invariants D(VQ, VP, N − 1).
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Lemma 7.4 If {ϕ(N)} PN {ψ(N) ∧ ξ(N)} holds, then {ϕ′(N − 1)} QN−1 {ψ′(N − 1) ∧

ξ′(N − 1)} holds, where ψ′(N − 1) ≡ ∃VP
(
ψ(N − 1)∧D(VQ, VP, N − 1)

)
and ξ′(N − 1) ≡

∃VP
(
ξ(N − 1) ∧D(VQ, VP, N − 1)

)
Proof. Follows from the construction of the difference invariants D(VQ, VP, N − 1). �

7.3.4 The Relational Full-Program Induction Algorithm

We present our method Diffy for verification of programs using relational full-program

induction in Algorithm 17. It takes a Hoare triple {ϕ(N)} PN {ψ(N)} as input, where

ϕ(N) and ψ(N) are pre- and post-condition formulas. We check the base in line 1 to

verify the Hoare triple for N = 1. If this check fails, we report a counterexample. Subse-

quently, we compute QN−1 and Peel(PN) as described in Section 7.3.1 using the function

GenQandPeel from Algorithm 16. On line 5, we compute the formulas ϕ′(N − 1) and

∆ϕ′(N) as described in Section 7.3.2. For automation, we analyze the quantifiers appear-

ing in ϕ(N) and modify the quantifier ranges such that the conditions in Section 7.3.2

hold. We infer difference invariants D(VQ, VP, N−1) on line 6 using the method described

in Section 7.3.3, wherein VQ and VP are sets of variables and arrays from QN−1 and PN−1

respectively. On line 7, we compute ψ′(N − 1) by eliminating the variables and arrays of

PN−1 in the set VP from ψ(N−1)∧D(VQ, VP, N−1). On line 8, we check the inductive step

of our analysis. If the inductive step succeeds, then we conclude that the assertion holds

and return True on line 9. If that is not the case then, we try to iteratively strengthen

both the pre- and post-condition of Peel(PN) simultaneously by invoking Strengthen

(line 11).

The function Strengthen first initializes the formula χ(N) with ψ(N) and the

formulas ξ(N) and ξ′(N − 1) to True. To strengthen the pre-condition of Peel(PN), we

infer a formula χ′(N−1) using Dijkstra’s weakest pre-condition computation of χ(N) over

the Peel(PN) in line 18. It may happen that we are unable to infer such a formula. In

such a case, if the program Peel(PN) has loops then we recursively invoke Diffy on line

21 to further simplify the program. Otherwise, we abandon the verification effort (line

23). We use quantifier elimination to infer χ(N−1) from χ′(N−1) and D(VQ, VP, N−1))

on line 24.

The inferred pre-conditions χ(N) and χ′(N−1) are accumulated in ξ(N) and ξ′(N−

225



Algorithm 17 Diffy( {ϕ(N)} PN {ψ(N)} )

1: if {ϕ(1)} P1 {ψ(1)} fails then . Base case for N=1

2: print “Counterexample found!”;

3: return False;

4: 〈QN−1,Peel(PN)〉 := GenQandPeel(PN);

5: 〈ϕ′(N − 1),∆ϕ′(N)〉 := FormulaDiff(ϕ(N)); . ϕ(N)⇒ ϕ′(N − 1) ∧∆ϕ′(N)

6: D(VQ, VP, N − 1) := InferDiffInvs(QN−1,PN−1, ϕ
′(N − 1), ϕ(N − 1));

7: ψ′(N − 1) := QE(VP, ψ(N − 1) ∧D(VQ, VP, N − 1));

8: if {ψ′(N − 1) ∧∆ϕ′(N)} Peel(PN) {ψ(N)} then

9: return True; . Verification Successful

10: else

11: b := Strengthen(PN ,Peel(PN), ϕ(N), ψ(N), ψ′(N − 1),∆ϕ′(N), D(VQ, VP, N));

12: return b;

13: procedure Strengthen(PN , Peel(PN), ϕ(N), ψ(N), ψ′(N − 1), ∆ϕ′(N),

D(VQ, VP, N))

14: χ(N) := ψ(N);

15: ξ(N) := True;

16: ξ′(N − 1) := True;

17: repeat

18: χ′(N − 1) := WP(χ(N),Peel(PN)); . Dijkstra’s WP for loop free code

19: if χ′(N − 1) = ∅ then

20: if Peel(PN) has a loop then

21: return Diffy({ξ′(N − 1) ∧ ∆ϕ′(N) ∧ ψ′(N − 1)} Peel(PN) {ξ(N) ∧

ψ(N)});

22: else

23: return False; . Unable to prove

24: χ(N) := QE(VQ, χ
′(N) ∧D(VQ, VP, N));

25: ξ(N) := ξ(N) ∧ χ(N);

26: ξ′(N − 1) := ξ′(N − 1) ∧ χ′(N − 1);

226



27: if {ϕ(1)} P1 {ξ(1)} fails then

28: return False; . Unable to prove

29: if {ξ′(N − 1) ∧∆ϕ′(N) ∧ ψ′(N − 1)} Peel(PN) {ξ(N) ∧ ψ(N)} holds then

30: return True; . Verification Successful

31: until timeout;

32: return False;

1), which strengthen the post-conditions of PN and QN−1 respectively in lines 25 - 26. We

again check the base case for the inferred formulas in ξ(N) on line 27. If the check fails

we report a failure to verify the post-condition on line 28. If the base case succeeds, we

proceed to the inductive step (line 29). When the inductive step succeeds, we conclude

that the assertion is verified and return True on line 30. Otherwise, the method tries to

infer more pre-conditions while iterating in the loop. In doing so, if the algorithm exceeds

the timeout value, it indicates an inconclusive result by returning False on line 32.

We now demonstrate the working of the algorithm on an example.

Example 7.2 Consider the example in Fig. 7.3. The given pre-condition is ϕ(N) ≡ True

and the post-condition is ψ(N) ≡ ∀j ∈ [0, N), b[j] = j + N3). On line 5, the algorithm

computes ϕ′(N−1) and ∆ϕ′(N−1) to be True. The difference invariant D(VQ, VP, N−1)

is the formula computed in Example 7.1 from Section 7.3.3. Using the difference invariant,

ψ′(N − 1) ≡ (∀j ∈ [0, N− 1), b′[j] = j + (N− 1)3 +(N− 1)× (2× N− 1) + N2 = j + N3)

is computed on line 7. The algorithm then invokes function Strengthen on line 11 that

infers the formulas χ′(N−1) ≡ (x′ = (N− 1)3) on line 18 and χ(N) ≡ (x = N3) on line 24.

The formulas χ(N) and χ′(N − 1) are accumulated in ξ(N) and ξ′(N − 1) resp. on line

25 and 26. The formula ξ′(N − 1) strengthens the pre-condition of Peel(PN) and ξ(N)

strengthens its post-condition. Verification succeeds after this strengthening iteration. �

The following theorem guarantees the soundness of our technique.

Theorem 7.3 Suppose there exist formulas ξ′(N) and ξ(N) and an integer M > 0 such

that the following hold

1. {ϕ(N)} PN {ψ(N) ∧ ξ(N)} holds for 0 < N ≤M , for some M > 0.

2. ξ(N − 1) ∧D(VQ, VP, N − 1)⇒ ξ′(N − 1) for all N > 1.
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3. {ξ′(N − 1)∧∆ϕ′(N) ∧ ψ′(N − 1)} Peel(PN) {ξ(N)∧ ψ(N)} holds for all N > M ,

where ψ′(N − 1) ≡ ∃VP
(
ψ(N − 1) ∧D(VQ, VP, N − 1)

)
.

Then, {ϕ(N)} PN {ψ(N)} holds for all N > 0.

Proof. Condition 1, the base case, ensures that {ϕ(N)} PN {ψ(N) ∧ ξ(N)} holds, for

0 < N ≤ M for some M > 0. Using Lemma 7.3, we decompose the pre-condition ϕ(N).

The resultant Hoare triple is {ϕ′(N − 1) ∧ ∆ϕ′(N)} PN {ψ(N) ∧ ξ(N)}. Using Lemma

7.2, we decompose the program PN into QN−1; Peel(PN), resulting in the Hoare triple

{ϕ′(N−1)∧∆ϕ′(N)} QN−1; Peel(PN) {ψ(N)∧ξ(N)}. Using ψ′(N−1)∧ξ′(N−1) as the

mid-condition by virtue of condition 2, we generate the Hoare triples {ϕ′(N − 1)} QN−1

{ψ′(N−1)∧ξ′(N−1)} and {ψ′(N−1)∧ξ′(N−1)∧∆ϕ′(N)} Peel(PN) {ψ(N)∧ξ(N)} for

all N > M . The first Hoare triple follows from the induction hypothesis and condition 2.

Condition 3 guarantees that the second Hoare triple holds. This concludes the proof. �

Lemma 7.5 If the function Diffy returns False, then we have found a valid counterex-

ample. When it returns True, {ϕN} PN {ψN} holds for all N ≥ 1.

Proof. Verifying the given Hoare triple {ϕN} PN {ψN} for all N ≥ 1 requires estab-

lishing the conditions 1, 2 and 3 mentioned in Theorem 7.3. The function Diffy ensures

condition 1 through the check on line 1. If this check fails, Diffy returns False along

with a valid counterexample that violates the base-case. The call to the function For-

mulaDiff in line 5 decomposes the pre-condition to compute a difference pre-condition

that satisfies the conditions mentioned in Lemma 7.3. The computation of difference in-

variants D(VQ, VP, N) via the call to function InferDiffInvs in line 6, the computation

of ψ′(N − 1) in line 7 and ξ′(N − 1) in lines 24 – 26 ensure that condition 2 holds. The

checks in lines 8 and 29 ensure condition 3 Theorem 7.3. Hence, {ϕN} PN {ψN} holds

for all N ≥ 1 when Diffy returns True. �

Relative Completeness of Relational Full-Program Induction in Special Cases

Suppose that the program PN has only non-nested loops then the difference program

Peel(PN) is loop-free. Further, suppose that the variables/arrays in ϕ(N) and those com-

puted in PN are not identified as affected (refer Section 5.3.4). In such cases, the programs

QN−1 and PN−1 are equal. The post-conditions of QN−1 and PN−1 are also the same i.e.
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ψ′(N − 1) ≡ ψ(N − 1). Further, the difference invariants D(VQ, VP) are restricted to the

template vA′ = vA, where vA′ ∈ VQ and vA ∈ VP denote a variable/array element. The

strengthening step also gets simplified since ξ′(N − 1) ≡ ξ(N − 1). And generating these

strengthening predicates using Dijkstra’s weakest pre-condition computation is always

possible for loop-free programs Peel(PN). As a result, even when the given pre- and post-

conditions have quantifiers with arbitrary nesting depth, the base-case and the inductive

step can be proved (by the underlying SMT solver). The following theorem states this

relative completeness result.

Theorem 7.4 Relational Full-Program Induction is sound and relatively complete for the

class of Hoare triples {ϕ(N)} PN {ψ(N)} satisfying the following conditions.

• program PN has only non-nested loops

• variables and arrays in ϕ(N) and those computed in PN are not identified as affected

Relative completeness is with respect to a proof system for the underlying logic in which

ϕ(N), ψ(N) and the semantics of the statements in the program PN are expressed.

Proof. Follows from the fact that the base-case and the inductive step need to be

proved by the underlying solver on a loop-free difference program Peel(PN) and that each

strengthening iteration involves computing Dijkstra’s weakest pre-condition on loop-free

programs. �

7.4 Experimental Evaluation

In this section, we experimentally evaluate the effectiveness and efficacy of the relational

full-program induction technique described previously on a large set of array-manipulating

benchmarks.

7.4.1 Implementation

We have instantiated the relational full-program induction technique in a prototype tool

called Diffy. It is written in C++ and is built using the LLVM(v6.0.0) [LA04] compiler.

We use the SMT solver Z3(v4.8.7) [MB08] for proving Hoare triples of loop-free pro-

grams. Diffy and the supporting data to replicate the experiments are openly available

at [CGU21a].
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Program Diffy Vajra VeriAbs VIAP

Category S U TO S U S TO S U TO

Safe C1 110 110 0 0 110 0 96 14 16 1 93

Safe C2 24 21 0 3 0 24 5 19 4 0 20

Safe C3 23 20 3 0 0 23 9 14 0 23 0

Total 157 151 3 3 110 47 110 47 20 24 113

Unsafe C1 99 98 1 0 98 1 84 15 98 0 1

Unsafe C2 24 24 0 0 17 7 19 5 22 0 2

Unsafe C3 23 20 3 0 0 23 22 1 0 23 0

Total 146 142 4 0 115 31 125 21 120 23 3

Table 7.1: Summary of the Experimental Results. S is Successful Result. U is Inconclusive

Result. TO is Timeout.

7.4.2 Experimental Setup

All experiments were performed on a machine with Intel i7-6500U CPU, 16GB RAM,

running at 2.5 GHz, and Ubuntu 18.04.5 LTS operating system. We have compared the

results obtained from Diffy with Vajra(v1.0) [CGU20b, CGU20a, CGU22], VIAP(v1.1)

[RL18] and VeriAbs(v1.4.1-12) [ACC+20]. We choose Vajra which also employs induc-

tive reasoning for proving array programs and verify the benchmarks in its test-suite.

We compared with VeriAbs as it is the winner of the arrays sub-category in SV-COMP

2020 [Bey20] and 2021 [Bey21]. VeriAbs applies a sequence of techniques from its port-

folio to verify array programs. We compared with VIAP which was the winner in arrays

sub-category in SV-COMP 2019 [Bey19]. VIAP also employs a sequence of tactics, imple-

mented for proving a variety of array programs. Diffy does not use multiple techniques,

however we choose to compare it with these portfolio verifiers to show that it performs

well on a class of programs and can be a part of their portfolio. All tools take C pro-

grams in the SV-COMP format as input. Timeout of 60 seconds was set for each tool. A

summary of the results is presented in Table 7.1.

7.4.3 Benchmarks

We have evaluated Diffy on a set of 303 array benchmarks, comprising of the entire test-

suite of [CGU20a, CGU22], enhanced with challenging benchmarks to test the efficacy

of our approach. These benchmarks take a symbolic parameter N which specifies the
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Figure 7.13: Cactus Plots (a) All Safe Benchmarks (b) All Unsafe Benchmarks
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Figure 7.14: Cactus Plots (a) Safe C1 Benchmarks (b) Unsafe C1 Benchmarks

size of each array. Assertions are (in-)equalities over array elements, scalars and (non-

)linear polynomial terms over N . We have divided both the safe and unsafe benchmarks

in three categories. Benchmarks in C1 category have standard array operations such as

min, max, init, copy, compare as well as benchmarks that compute polynomials. In these

benchmarks, branch conditions are not affected by the value of N , operations such as

modulo and nested loops are not present. There are 110 safe and 99 unsafe programs

in the C1 category in our test-suite. In C2 category, the branch conditions are affected

by change in the program parameter N and operations such as modulo are used in these

benchmarks. These benchmarks do not have nested loops in them. There are 24 safe and

unsafe benchmarks in the C2 category. Benchmarks in category C3 are programs with

atleast one nested loop in them. There are 23 safe and unsafe programs in category C3

in our test-suite. The test-suite has a total of 157 safe and 146 unsafe programs.
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7.4.4 Results and Analysis

Of the 157 safe benchmarks, Diffy verified 151 safe benchmarks, compared to 110 verified

by Vajra as well as VeriAbs and 20 verified by VIAP. Diffy was unable to verify 6 safe

benchmarks. In 3 of these 6 benchmarks, the SMT solver timed out while trying to prove

the induction step since the formulated query had a modulus operation and in the other 3

benchmarks it was unable to compute the predicates needed to prove the assertions. In 6

benchmarks difference invariants with quadratic terms were needed, and the rest required

difference invariants with only linear terms. Vajra was unable to verify 47 programs from

categories C2 and C3. These are programs with nested loops, branch conditions affected

by N , and benchmarks where it could not compute the difference program. The sequence

of techniques employed by VeriAbs, ran out of time on 47 programs while trying to prove

the given assertion. VeriAbs proved 2 benchmarks in category C2 and 3 benchmarks in

category C3 where Diffy was inconclusive or timed out. VeriAbs spends considerable

amount of time on different techniques in its portfolio before it resorts to Vajra, and

hence, it could not verify 14 programs that Vajra was able to prove efficiently. VIAP

was inconclusive on 24 programs which had nested loops or constructs that could not be

handled by the tool. It ran out of time on 113 benchmarks as the initial tactics in its

sequence took up the allotted time but could not verify the benchmarks. Diffy was able

to verify all programs that VIAP and Vajra were able to verify within the specified time

limit.

The cactus plot in Fig. 7.13(a) shows the performance of each tool on all safe bench-

marks. Diffy was able to prove most of the programs within 3 seconds. The cactus

plot in Fig. 7.14(a) shows the performance of each tool on safe benchmarks in C1 cat-

egory. Vajra and Diffy perform equally well in the C1 category. This is due to the

fact that both tools perform efficient inductive reasoning. Diffy outperforms VeriAbs

and VIAP in this category. The cactus plot in Fig. 7.15(a) shows the performance of

each tool on safe benchmarks in the combined categories C2 and C3, that are difficult for

Vajra as most of these programs are not within its scope. Diffy outperforms all other

tools in categories C2 and C3. VeriAbs was an order of magnitude slower on programs

it was able to verify, as compared to Diffy. VeriAbs spends significant amount of time

in trying techniques from its portfolio, including Vajra, before one of them succeeds in

verifying the assertion or takes up the entire time allotted to it. VIAP took 70 seconds
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Figure 7.15: Cactus Plots (a) Safe C2 & C3 Benchmarks (b) Unsafe C2 & C3 Benchmarks

more on an average as compared to Diffy to verify the given benchmark. VIAP also

spends a large portion of time in trying different tactics implemented in the tool and

solving the recurrence relations in programs.

The relational full-program induction technique reports property violations when the

base case of the analysis fails for small fixed values of N . While the focus of our work is

on proving assertions, we report results on unsafe versions of the safe benchmarks from

our test-suite. Diffy was able to detect a property violation in 142 unsafe programs

and was inconclusive on 4 benchmarks. For unsafe benchmarks, Diffy does not require

computation of difference invariants since the analysis concludes after the base-case gets

violated. Vajra detected violations in 115 programs and was inconclusive on 31 programs.

VeriAbs reported 125 programs as unsafe and ran out of time on 21 programs. VIAP

reported property violation in 120 programs, was inconclusive on 23 programs and timed

out on 3 programs.

The cactus plot in Fig. 7.13(b) shows the performance of each tool on all unsafe

benchmarks. Diffy was able to detect a violation faster than all other tools and on a

larger number of benchmarks from the test-suite. Fig. 7.14(b) and Fig. 7.15(b) give a

finer glimpse of the performance of these tools on the categories that we have defined. In

the C1 category, Diffy and Vajra have comparable performance and Diffy disproves

the same number of benchmarks as Vajra and VIAP. In C2 and C3 categories, Diffy

is able to detect property violations in a larger number of benchmarks as compared to

other tools and took relatively less time.

To observe any changes in the performance of these, we also ran all the benchmarks

with an increased time out of 100 seconds. The plots for this experiment on safe and
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Figure 7.16: Cactus Plots. TO=100s. (a) Safe Benchmarks (b) Unsafe Benchmarks

unsafe benchmarks are shown in Fig. 7.16. Performance remains unchanged for Diffy,

Vajra and VeriAbs on both safe and unsafe benchmarks, and of VIAP on unsafe

benchmarks. VIAP was able to additionally verify 89 safe programs in categories C1 and

C2 with the increased time limit.

7.4.5 Limitations

There are several scenarios under which the technique described in this chapter may

remain inconclusive. Currently, relational full-program induction can only verify nested

loops of that satisfy specific constraints mentioned in Section 7.3.1. We are unable to

verify programs that do not satisfy these conditions. Fig. 6.12 shows a concrete example

that violates the necessary conditions for computing programs QN−1 and Peel(PN).

The inductive reasoning may remain inconclusive when we are unable to compute

difference invariants for a program. Programs with deeply nested loops may require differ-

ence invariants with high-degree polynomial terms. The program that have complicated

conditional statements may require difference invariants with multiple disjunctive clauses.

Computing such difference invariants may be at times quite challenging.

The difference program Peel(PN) consists of the peeled iterations of all the loops in

PN (that are missed in PN−1). Hence, relational full-program needs to know the symbolic

upper bound on the value of the loop counter to be able to compute the number of

iterations to be peeled from the program. The heuristics used for weakest pre-condition

computation may either fail or return a pre-condition that causes violation of the base-

case. The solver may be unable to prove the verification conditions within the stipulated
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time frame.

Our prototype implementation also has a few limitations. We currently support as-

signment statements with expressions containing {+,−,×,÷} operators. We support a

single program parameter and peel only the last iterations of loops. Despite these limita-

tions, the experiments show that relational full-program induction performs remarkably

well on a large suite of benchmarks.

7.5 Verifying Existentially Quantified Properties

In this section, we revisit our entire verification approach while eliminating the restriction

that the pre- and post-conditions must be universally quantified formulas or quantifier-

free formulas of a specific form. We show that the relational full-program induction

technique extends naturally to verifying programs with existentially quantified pre- and

post-conditions. We now look at how the existential quantified pre- and post-conditions

are handled in each component of our technique. An existentially quantified pre-condition

ϕ(N) has the form
∨N−1
i=0 ρi, where ρi is a formula on the ith elements of one or more arrays,

and scalars used in PN . As previously stated, we infer ϕ′(N − 1) to be
∨N−2
i=0 ρi and

∆ϕ′(N) to be ρN−1 while ensuring that variables/array elements in ρN−1 are not modified

by QN−1. Further, the computation of difference invariants now considers the relations

between corresponding variables/array elements appearing in the existentially quantified

pre-conditions of programs QN−1 and PN−1 to begin with. At last, the generation of QN−1

and Peel(PN) from a given program PN is independent of the given pre- and post-condition

formulas, and hence, remains unaffected. We demonstrate the relational full-program

induction technique in detail on programs that have existentially quantified pre- and/or

post-conditions with a couple of examples illustrated in Figs. 7.17 and 7.18.

Consider the Hoare triple shown in Fig. 7.17(a). The pre-condition in the Hoare

triple states that there exists an index i in array A where the value of the array element is

greater than twice the value of N. The program has a couple of sequentially composed loops

that update arrays B and C. The first loop assigns to B[j] an expression that subtracts N

from A[j]. Subsequently, the second loop assigns to C[k] an expression that subtracts N

from B[k]. The post-condition asserts that there exists an element in array C that has a

non-negative value greater than 0.
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// assume(∃i∈[0,N) A[i] > 2×N)

1. for (int j=0; j<N; j=j+1)

2. B[j] = A[j] - N;

3. for (int k=0; k<N; k=k+1)

4. C[k] = B[k] - N;

// assert(∃i∈[0,N) C[i] > 0)

(a)

// assume(∃i∈[0,1) A[i] > 2×1)

1. for (int j=0; j<1; j=j+1)

2. B[j] = A[j] - 1;

3. for (int k=0; k<1; k=k+1)

4. C[k] = B[k] - 1;

// assert(∃i∈[0,1) C[i] > 0)

(b)

// assume(∃i∈[0,N-1) A[i] > 2×N)

1. for (int j=0; j<N-1; j=j+1)

2. B[j] = A[j] - N;

3. for (int k=0; k<N-1; k=k+1)

4. C[k] = B[k] - N;

// assert(∃i∈[0,N-1) C[i] > 0)

(c)

// assume(A[N-1] > 2×N) // ∆ϕ′(N)

// assert(∃i∈[0,N-1) C[i] > 0) // ψ′(N-1)

1. B[N-1] = A[N-1] - N;

2. C[N-1] = B[N-1] - N;

// assert(∃i∈[0,N) C[i] > 0) // ψ(N)

(d)

Figure 7.17: (a) Hoare Triple with Existentially Quantified Pre- and Post-conditions, (b) Base-

case, (c) Hoare Triple on QN−1 and (d) Inductive Step

The Hoare triple shown in Fig. 7.17(b) checks the base-case of our technique where N

is substituted with the constant value 1. This check is easily proved by the back-end SMT

solver Z3. Next, we peel the loops in the program and propagate them across subsequent

loops. Observe that the values of array elements computed by the statements within

loops do not have any read-after-write dependence on the peeled iterations of prior loops.

Hence, no substitutions are needed while computing QN−1. However, note that due to the

use of the program parameter N in the loop body, the arrays in the program are indeed

identified as affected. Hence, QN−1 and PN−1 are not semantically equivalent programs.

The pre-condition of QN−1 computed by us is ϕ′(N−1) := ∃i ∈ [0, N−1)
(
A′[i] > 2×

N
)
, whereas the pre-condition of PN−1 is ϕ(N−1) := ∃i ∈ [0, N−1)

(
A[i] > 2×(N−1)

)
.

Notice that ϕ′(N − 1) and ϕ(N − 1) are not equivalent. We now relate the corresponding
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variables in QN−1 and PN−1. The difference invariant computed by our technique is

D(VQ, VP, N − 1) := ∀i ∈ [0, N − 1)
(
A′[i]−A[i] = 2 ∧B′[i]−B[i] = 1 ∧C ′[i]−C[i] = 0

)
where A′, B′, C′ ∈ VQ and A, B, C ∈ VP. Using this difference invariant, we compute the

post-condition of QN−1 as ψ′(N) := ∃i ∈ [0, N − 1)
(
C ′[i] > 0

)
. The resultant Hoare

triple {ϕ′(N−1)} QN−1 {ψ′(N −1)} computed by our technique is shown in Fig. 7.17(c).

Next, we compute the difference pre-condition as ∆ϕ′(N) :=
(
A′[N − 1] > 2 ×N

)
.

The difference program Peel(PN) is just the peeled iterations of both the loops. These

quantities are computed for the inductive step shown in Fig. 7.17(d). The back-end SMT

solver now proves the inductive step, and we conclude that the given post-condition holds

for all values of N > 0.

Now we consider the Hoare triple shown in Fig. 7.18(a) where the pre-condition is

universally quantified and the post-condition is existentially quantified. The pre-condition

states that the value of each element in array A is equal to N. The program has a couple of

sequentially composed loops that update the scalar sum and array B. Before the first loop

starts, the scalar variable S is initialized to 0. The first loop in the program computes

a recurrence in variable sum, accumulating the content of array A. Subsequently, in each

iteration of the second loop, B[k] is assigned the expression that adds the value of the

loop counter k to sum. The post-condition asserts that there exists an element in array B

that has the value given by a non-linear expression in N and the quantified variable.

The Hoare triple shown in Fig. 7.18(b) checks the base-case of the technique where

N is substituted with the constant value 1. It is proved by the back-end SMT solver

Z3. Notice that the value of array B computed by the statement within the second

loop has a read-after-write dependence on the peeled iteration of the first loop. Further,

due to the dependence, array B is identified as affected. Due to the use of the program

parameter N in the predicate on A in the pre-condition, array A is also identified as affected.

Naturally, QN−1 and PN−1 are not semantically equivalent programs in this case due to

the above mentioned dependence. The program QN−1 computed after peeling each loop

and propagating the peels across subsequent loops, by substituting the right hand side

expression from the peel of the first loop in the statement in the second loop, is shown in

Fig. 7.18(c).

The pre-condition of QN−1 is ϕ′(N − 1) := ∀i ∈ [0, N − 1)
(
A′[i] = N

)
, whereas the

pre-condition of PN−1 is ϕ(N − 1) := ∀i ∈ [0, N − 1)
(
A[i] = N − 1

)
. The difference
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// assume(∀i∈[0,N) A[i] = N)

1. sum = 0;

2. for (int j=0; j<N; j=j+1)

3. sum = sum + A[j];

4. for(int k=0; k<N; k++)

5. B[k] = sum + k;

// assert(∃i∈[0,N) B[i]=i+N×N)

(a)

// assume(∀i∈[0,N) A[i] = 1)

1. sum = 0;

2. for (int j=0; j<1; j=j+1)

3. sum = sum + A[j];

4. for(int k=0; k<1; k++)

5. B[k] = sum + k;

// assert(∃i∈[0,N) B[i]=i+1×1)

(b)

// assume(∀i∈[0,N-1) A[i] = N)

1. sum = 0;

2. for (int j=0; j<N-1; j=j+1)

3. sum = sum + A[j];

4. for(int k=0; k<N-1; k++)

5. B[k] = sum + A[N-1] + k;

// assert(∃i∈[0,N-1) B[i]=i+N×N)

(c)

// assume(A[N-1] = N)

// assert(∃i∈[0,N-1) B[i]=i+N×N)

// assume(sum = N×(N-1))

1. sum = sum + A[N-1];

2. B[N-1] = sum + N-1;

// assert(∃i∈[0,N) B[i]=i+N×N)

// assert(sum = N×N)

(d)

Figure 7.18: (a) Hoare Triple with Universally Quantified ϕ(N) and Existentially Quantified

ψ(N), (b) Base-case, (c) Hoare Triple on QN−1 and (d) Inductive Step after Strengthening

invariant computed by our technique is D(VQ, VP, N −1) := ∀i ∈ [0, N −1)
(
A′[i]−A[i] =

1 ∧ sum′ = sum ∧ B′[i] − B[i] = 2 × N − 1
)

where sum′, A′, B′ ∈ VQ and sum, A, B ∈ VP.

Using this difference invariant, we compute the post-condition of QN−1 as ψ′(N − 1) :=

∃i ∈ [0, N − 1)
(
B′[i] = i+N ×N

)
starting from the pre-condition ϕ′(N − 1). Note that

the post-condition ψ′(N−1) is not the same as the post-condition ψ(N−1) of PN−1. The

difference pre-condition computed by the technique is ∆ϕ′(N) :=
(
A′[N−1] = N

)
and the

difference program Peel(PN) is just the peeled iterations of both the loops. The inductive

step that uses these quantities is shown in Fig. 7.17(d). The formula sum = N × (N − 1)

(denoted ξ′(N − 1) in our description) strengthens the pre-condition and sum = N ×N
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(denoted ξ(N) in our description) strengthens the post-condition. The formulas on the

variable sum are computed during the iterative strengthening of pre- and post-condition

by using Dijkstra’s weakest pre-condition computation. The back-end SMT solver now

successfully proves the inductive step. Hence, we conclude that the given post-condition

holds for all values of N > 0.

7.6 Comparison with Related Techniques

The relational full-program induction technique described in this chapter is closely related

to several efforts that apply inductive reasoning to verify properties of array programs.

This work subsumes the full-program induction technique in [CGU20a, CGU22] that

works by inducting on the entire program via a program parameter N . We propose a

principled method for computation and use of difference invariants, instead of computing

difference programs which is more challenging. An approach to construct safety proofs

by automatically synthesizing squeezing functions that shrink program traces is proposed

in [ISIRS20]. Such functions are not easy to synthesize, whereas difference invariants

are relatively easy to infer. The technique in [KN22] attempts to deductively verify

loops and localize errors without using inductive invariants for a very restricted class

of programs. Detailed experimental evaluation is not reported and their system is not

available for experimentation. The method may be aimed specifically at verifying selected

algorithms. In [CGU17], the post-condition is inductively established by identifying a

tiling relation between the loop counter and array indices used in the program. Relational

full-program induction can verify programs from [CGU17], when supplied with the tiling

relation. The technique in [SB12] identifies recurrent program fragments for induction

using the loop counter. They require restrictive data dependencies, called commutativity

of statements, to move peeled iterations across subsequent loops. Unfortunately, these

restrictions are not satisfied by a large class of programs in practice, where relational

full-program induction succeeds.

Computing differences of program expressions has been studied for incremental com-

putation of expensive expressions [PK82, LST98], optimizing programs with arrays [LSLR05],

and checking data-structure invariants [SB07]. These differences are not always well suited

for verifying properties. In contrast, difference invariants enable the inductive step of the
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reasoning in relational full-program induction. Further, computation of the difference

programs is challenging in many cases for the full-program induction technique, however,

difference invariants succeed in enabling the verification of such programs [CGU21b].

In [GGK20], trace logic that implicitly captures inductive loop invariants is described.

They use theorem provers to introduce and prove lemmas at arbitrary time points in the

program, whereas we infer and prove lemmas at key control points during the inductive

step using SMT solvers. VIAP [RL18] translates the program to an quantified first-order

logic formula using the scheme proposed in [Lin16]. The tool uses a portfolio of tactics

to simplify and prove the generated formulas. Dedicated solvers for recurrences are used

in these methods whereas the relational full-program induction technique adapts handles

even recurrences via inductive reasoning.

Several techniques generate invariants for array programs. QUIC3 [GSV18], Fre-

qHorn [FPMG19] and [BMR13] infer universally quantified invariants over arrays for Con-

strained Horn Clauses (CHCs) among other tools. Template-based techniques [GMT08,

SG09, BHMR07] search for inductive quantified invariants by instantiating parameters

of a fixed set of templates. We generate relational invariants, which are often easier to

infer compared to inductive quantified invariants for each loop. For many benchmarks,

the relational invariants of a highly restricted form suffice, for example, when a program

does not refer to any affected variables/arrays.

Counterexample-guided abstraction refinement using prophecy variables for pro-

grams with arrays is proposed in [MIG+21]. VeriAbs [ACC+20] uses a portfolio of

techniques, specifically to identify loops that can be soundly abstracted by a bounded

number of iterations. Vaphor [MG16] transforms array programs to array-free Horn for-

mulas to track bounded number of array cells. Booster [AGS14] combines lazy abstrac-

tion based interpolation [ABG+12a] and acceleration [BIK10, JSS14] for array programs.

Abstractions in [CCL11, DDA10, GRS05, HP08, JM07, LR15, MA15] implicitly or ex-

plicitly partition the range array indices to infer and prove facts on array segments. In

contrast, the relational full-program induction technique does not rely on abstractions.
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7.7 Conclusion

We presented a novel generalization of the full-program induction technique that combines

generating relations between two version of a program and inductive reasoning. These

invariants relate corresponding variables and arrays from two versions of a program. These

relations facilitate inductive reasoning by assisting in the inductive step. Invariants that

refer to only the differences between the values of variables and arrays from the two

versions are easy to infer and prove. We presented an instantiation of the technique in

a prototype tool Diffy. We experimentally showed that Diffy out-performs the tools

that have won the Arrays sub-category in SV-COMP 2019, 2020 and 2021. Since SV-

COMP 2022, the verification tool Diffy is a part of the portfolio of reasoning techniques

in VeriAbs and assists in proving the challenging examples from the ReachSafety-Arrays

sub-category.
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Chapter 8

Conclusions & Prospects

In this thesis, we presented three novel inductive verification techniques that adapt in-

duction in different ways to prove a sub-class of quantified and quantifier-free properties

of programs that manipulate arrays of parametric sizes. We described the instantiation of

these techniques in prototype tools and demonstrated their effectiveness against related

state-of-the-art verification techniques.

We first presented a theory of tiling that decomposes reasoning about an array into

reasoning about automatically identified tiles in the array in programs that use complex

index expressions to access arrays. While the generation of tiles is difficult in general, we

showed that simple heuristics are often quite effective in automatically generating tiles

that work well on programs seen in practice. We described an implementation of the

technique in the tool Tiler. We presented an experimental evaluation of Tiler on a

large suite of benchmarks that manipulate arrays. Tiler outperforms other verification

tools that can prove universally quantified properties of array programs on a suite of

benchmarks.

Next, we presented the full-program induction technique that obviates the need for

loop-specific invariants during verification and is orthogonal to tile-wise reasoning. The

technique performs induction over the entire program via parameter N by automatically

computing the difference programs and difference pre-conditions. We presented different

techniques for computing difference programs. Full-program induction can be recursively

applied to simplify verification until the difference program is loop-free. We also pre-

sented techniques for computing the difference pre-conditions as well as for simultane-

ously strengthening the pre- and post-conditions. We showed that the generalizations of
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the full-program induction and its sub-components expand the scope of the full-program

induction technique to a larger class of programs. We proved the correctness of the full-

program induction technique and presented the progress guarantees. We also presented

various problem settings in which full-program induction can be applied. We described

a prototype implementation of full-program induction in the tool Vajra. We showed

via experiments that Vajra performs remarkably well vis-a-vis state-of-the-art tools for

verifying array programs. The verification tool VeriAbs from an industry research group

that participates regularly in SV-COMP has integrated Vajra into its verification strat-

egy since 2020 to boost its capabilities in proving programs from the ReachSafety-Arrays

sub-category.

Finally, building on the basic principle of full-program induction, we presented an-

other technique called relational full-program induction. Significantly, it applies to pro-

grams with nested loops that have hitherto been beyond the reach of most automated

verification techniques that analyze array programs. Relational full-program induction

successfully overcomes the challenges associated with the computation of difference pro-

grams. It combines inductive reasoning with reasoning based on relational invariants on

corresponding variables and arrays in two slightly different versions of a program. These

relations facilitate inductive reasoning by assisting the formulation of the inductive step.

We studied the restriction of such relations to differences between the values of vari-

ables/arrays in the two versions of a program and showed that it suffices for a large class

of verification problems. Such relations, termed difference invariants, are comparatively

easy to infer and use. We presented an instantiation of the technique in a prototype tool

called Diffy. We experimentally showed that Diffy out-performs the tools that have

won the ReachSafety-Arrays sub-category in SV-COMP 2019, 2020 and 2021. Since 2022

Diffy is an integral part of the portfolio of verification strategies in VeriAbs, an ver-

ification tool from industry that regularly participates in SV-COMP, to prove programs

from the ReachSafety-Arrays sub-category.

The inductive reasoning techniques presented in this thesis offer several advantages

over techniques based on loop-specific invariant generation. All the three techniques are

compositional and property-driven. The use of induction makes them scalable, precise and

efficient in practice. These techniques are well-suited to be part of a portfolio of verification

techniques and indeed our techniques are a useful part of industrial verification tools.
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8.1 Future Prospects

The techniques presented in this thesis have laid the foundation for exploration of several

interesting lines of work. In this section, we discuss some of these future possibilities. We

divide these into two categories: (i) ideas to extend the techniques described in this thesis

for program verification and (ii) useful adaptations of our techniques in domains beyond

program verification.

Enhancements to Our Techniques

Full-program induction verifies a given program PN by recursively computing the dif-

ference program ∂PN until the base case and the inductive step are proved. We have

previously demonstrated that the differencing operation ∂ may not always generate a

difference program ∂PN that is “simpler” to verify than the given program PN . For in-

stance, even though rare, it may happen that even after k recursive attempts the kth

difference program ∂kPN computed by full-program induction is not simpler to verify

than PN . Due to this recursive nature of full-program induction, we proposed a metric,

based on the syntactic changes in the difference program, to check progress after each

recursive application of full-program induction. An alternative method, that comes with

guarantee of reduction in verification complexity, can be explored for computing difference

programs. For example, techniques in automatically integrating expressions and program

fragments [HPR89] can be explored to compute a database of difference programs. Such

a database would consists of two categories of programs. The base category, consisting

of programs that can be verified without further application of inductive reasoning. This

includes programs that can be proved using an SMT solver after compilation into an

SMT-LIB formula, such as, loop-free programs, loopy programs with finite loop bounds

and programs whose loops can be summarized/accelerated using known techniques. The

inductive category, consisting of programs that can be verified by a fixed number (say k)

of applications of full-program induction. When N is 1, a program P1 can be viewed as

the sequential composition of an initial program fragment P0 and the difference program

∂P(1). When N is 2, P2 is P(0); ∂P(1); ∂P(2). The program PN can be represented

as P(0); for(i=0; i<N; i++) ∂P(i). The computation in PN can thus be viewed as

an integral of the difference programs ∂P(i). This allows us to build a calculus for rea-
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soning with programs when we know their differences from the database. The guarantee

here is that if a difference program is found in such a database, we are guaranteed that,

within a fixed number of recursive invocations, full-program induction would be able to

successfully decide if the given post-condition holds or not. This would help in simplifying

the computation of difference programs required for proving properties of programs using

full-program induction.

Another interesting line of work that is worth investigating is the use of synthesis-

based techniques for automatically computing difference programs and difference pre-

conditions. These can also be specialized for programs from interesting domains. At

the same time, investigations in using synthesis techniques for automatic generation of

relational invariants is also equally appealing and can be considered in the same breath.

While there is a lot of literature on synthesis techniques that can automatically generate

invariants for a given program, very few techniques have attempted generation of relational

invariants between different programs/versions. Specifically, the computation of relational

invariants using techniques inspired from translation validation literature, syntax-guided

synthesis techniques and invariant generation methodologies can be explored. It would

also be interesting to search for other novel ways of adapting the relational invariants in

an inductive framework for the purposes of proving properties of programs.

Explorations in techniques that aid the transformations of predicates on the vari-

ables/arrays of a program (say QN−1) to the variables/arrays of another (say PN−1) and

vice-versa may be beneficial. In the relational full-program induction technique, we used

Dijkstra’s weakest pre-condition computation to infer ξ′(N−1) for strengthening the pre-

condition of the difference program. Subsequently, we have used quantifier elimination

techniques to compute the post-condition ξ(N − 1) of the program PN−1 using difference

invariants D(VQ, VP, N−1) that are restricted to equalities. This can be further extended

to the case where the difference invariants are not necessarily equality predicates. In such

cases, the idea is to use abduction techniques for computing a formula ξ(N − 1) given the

formulas D(VQ, VP, N−1) and ξ′(N−1) such that ξ(N−1)∧D(VQ, VP, N−1)⇒ ξ′(N−1).

Potential Applications Beyond Verification

Ideas used in full-program induction, especially the computation of difference programs,

have potential applications in several program transformations and compiler optimiza-
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tions such as incrementalization. To see this consider applications that generate a stream

of data during their operation. The generated data is subsequently processed by programs

that compute the result of applying a function over the input data. In such computations,

modification to the input must be processed instantaneously, instead of batch processing,

so that its effect on the output is immediately visible. A program is called offline if

the entire data is required at the beginning of the computation to compute the result a

function. In contrast, a online program does not need the entire data at the beginning

of the computation and performs partial computation on a data point as and when it is

provided as input to the program. Incrementalization is a program transformation tech-

nique proposed in the literature that aims to achieve this. Incrementalization transforms

a program in a way that executing it on the modified input is comparatively cheaper

than executing the original program. This optimization can be formally described as fol-

lows. Suppose IN represents the input to a program PN , that can be decomposed into

IN−1 and ♦IN . Then, incrementalization generates an incrementalized program ♦PN

such that PN(IN−1 +♦IN) is semantically equivalent to PN−1(IN−1); ♦PN(♦IN) and the

cost of computing ♦PN on the new piece of input ♦IN and combining it with the output

of PN−1(IN−1) is significantly cheaper than executing PN on the entire input IN . Ev-

ery time the input is modified, i.e. it is appended with ♦IN , then the incrementalized

program ♦PN is executed. Notice that the computation of ♦PN can be viewed as the

decomposition of PN into PN−1; ♦PN , which resembles our difference computation. We

strongly believe that the computation of difference programs can be adapted to automat-

ically transform offline batch processing programs into their online versions. While the

goal of computing the difference program in our technique is to simplify verification, it

would be interesting to see how difference computation can be adapted for the purposes

of generating the incrementalized program ♦PN in this optimization.

The difference computation may have a worthwhile impact on the way in which loops

in a program are fused together by compilers. Loop fusion (also called loop jamming) is a

program transformation technique implemented in compilers that can potentially reduce

the number of loops in the input program. Programs transformed using loop fusion offer

advantages such as (i) they are easier to parallelize, (ii) they can make better reuse of

data, and (iii) they have an increased scope for the application of other program opti-

mizations. Past work on loop fusion is limited due to the restrictions imposed by the
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applicable program analysis techniques to return fruitful results. Further, the techniques

in the literature do not take in to consideration the given post-condition that the re-

sultant optimized program must satisfy. Hence, such technique take a very conservative

approach in fusing loops. We take a very aggressive approach while generating the differ-

ence programs during full-program induction. Our approach may be useful to generate

a significant more optimized version of the program with multiple sequentially composed

loops fused in a way that the given post-condition is satisfied after the transformation.

Application of inductive reasoning to verify programs with other data structures can

also be considered. For example, separation logic has been used for verifying programs

that manipulate heaps, lists, trees, and graphs. Adapting the full-program induction

technique and its variants to verify heap-manipulating programs makes an interesting

direction that can be pursued.

Finally, automated support for applying the full-program induction technique to

verify array-manipulating programs that store integers, matrices, polynomials, vectors

and other types of data is another interesting line of work that can be pursued. Arrays

storing matrices as elements, called tensors, are extensively used in machine learning and

cryptography domains. We believe that our induction-based techniques can be adapted

for efficiently verifying APIs in libraries that manipulate tensors.
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